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Note: You can find a brief summary of this project here and don’t forget to check out our GitHub repo.

Important: New to FPGAs or just need a refresher? Jump here first!

Fig. 1: Complete Block Diagram of FPGA Board
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CHAPTER

ONE

FPGA REVIEW AND EMULATION OVERVIEW

Important: This section is intended for FPGA and digital design beginners, although some intermediate concepts
are briefly discussed.

1.1 A One Minute Introduction to FPGAs

This fantastic quick video from Charles Clayton outlines the very basics of an FPGA. If you do not know what an
FPGA is, start here before moving on.

Still confused? Here is a more approachable example that may help:

Imagine you had a box of USB sticks to sell, where each stick performs some task, whether it is counting from one
to ten, transferring some songs to the hard drive, or even running another smaller computer. Because we hope to sell
them, we should test every single stick (what we will refer to as a device under test) as much as possible for maximum
compatibility to avoid any future errors or refunds. But, considering how many computers there are in the world, it is
almost impossible to verify that every stick will work on every laptop or desktop aside from buying and testing on each
one individually. The price for failure is high too, as a broken USB stick could potentially damage a user’s computer,
leading to an expensive safety recall.

Now imagine if you had access to a special computer called an emulation evaluation board. From the outside, it is
like any other computer, as the board also has USB, Ethernet, and other standard peripherals. However, at the heart
of the board is what is known as an FPGA, a special kind of chip that can replicate/emulate every other computer in
existence. Although a little clunky and hard to use, this FPGA means that you can now rest assured knowing that your
USB sticks can be fully tested on every possible configuration before being sold. Not to mention, the board only needs
to be set up once as an emulation environment before you’re able to easily swap in and out DUTs for testing. Not bad,
right?

Ready for a (slightly) technical deep dive? Read on for more details.

3
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Fig. 1: A MiSTer board with Cyclone V FPGA

1.2 What is an FPGA anyways?

In 2020, Apple unveiled their newest computer chip, the M1, as the first 5nm processor for their range of Macintosh
computers. As their very first in-house designed system on a chip, or SoC, the process of creating the M1 and other
competitors like the Qualcomm Snapdragon 888 was very expensive, with costs reaching into the hundreds of millions
of US dollars.

As an SoC iterates through each design and manufacturing step, the harder (and more expensive) it becomes to correct
any errors. Think of a nightmare scenario where a manufacturer is forced to recall every single smartphone and
computer due to a fatal bug with the CPU that was never caught (this happened to Intel and their Pentium processors
in 1994!) This is where an FPGA becomes extremely useful.

4 Chapter 1. FPGA Review and Emulation Overview
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Field programmable gate arrays or FPGAs are integrated circuits (a set of circuits layered within semiconductor
material like silicon, also known as chips) designed to be configured by a customer or designer after manufacturing.
With FPGAs, a designer can program features, adapt to environment and regulatory changes, and reconfigure hardware
even in the field - hence the term field programmable. An FPGA contains programmable logic elements (LEs) that
either act as basic logic gates or connect to perform complex actions as logic blocks. From a top-level perspective,
FPGAs consist mostly of configurable memory, high speed I/O, logic blocks, and routing.

Fig. 2: A Virtex-7 FPGA on an ADC/DAC signal board1

While SoCs like the Snapdragon 888 and other ICs are not intended to be physically changed after manufacturing,
FPGAs allow for design flexibility and provides the opportunity to change how sections in a system work without
introducing subsequent cost, delays, or design risk. For example, because FPGAs excel in processing digital signals
quickly, one common application is machine vision. An FPGA projecting a back-up camera onto the rear-view mirror
of a self-driving car can be modified to reduce latency and comply with new government standards simply through a
software update. Conversely, this flexibility is almost impossible with a microprocessor, as any drastic changes would
ultimately result in a complete redesign.

This optimized behavior is possible due to one key point – FPGAs operate in parallel. Normally, a processor must load
in instructions in a linear fashion, even for simple tasks such as multiplying or shifting bits. Each instruction must be
evaluated in order before the CPU can move onto the next one. This is fine under normal use, but in real-time applica-
tions where latency must be as low as possible, having to wait for the AC to activate before the brake pedal can be used
is unacceptable. In contrast, an FPGA can execute multiple complex operations simultaneously — with a 10-element
matrix, a designer can implement 10 signal/data pipelines to use in parallel. While a microprocessor has sequential
processing, an FPGA’s concurrent processing allows it to achieve better optimization and a more deterministic latency
than even a processor running an RTOS.

In more nuanced terms, the flexibility from an FPGA allows a designer to decide which operations occur at any given
clock cycle. Even though FPGAs are clocked much slower than CPUs (100 MHz vs. up to 4 to 5 GHz), given the right
design, FPGAs can become much more optimal than even the fastest CPUs. For example, instead of only being able

1 The example FPGA ADC/DAC board used.
2 Xilinx’s automotive system is discussed in this press release.
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Fig. 3: Example of how an FPGA can excel as a DSP for self-driving cars2

to multiply two numbers at every cycle with a CPU, a designer can use all 10 pipelines to multiply 20 numbers for
every single cycle - 1/10th the time it would take with a traditional CPU, assuming that the CPU is never interrupted by
another instruction. Because an FPGA has very high determinism (in that we know exactly when each instruction will
execute), we can rest easy knowing that the FPGA will never be unintentionally interrupted and continue to perform
at a consistently high threshold.

Important: If you are coming from a traditional programming background, this is an especially crucial point. You
are most likely accustomed to coding in sequential order, so always consider concurrency when working with FPGAs!

Fig. 4: A dual-core CPU vs. multi-channel FPGA3

3 More about FPGA computational performance can be found in this article.

6 Chapter 1. FPGA Review and Emulation Overview

https://www.infoq.com/articles/fpga-computational-performance/


fpgaemu, Release 0.1

1.3 What’s Inside an FPGA?

While a software engineer writes linear high-level code to become compiled into low-level assembly instructions, a
hardware designer does not have a compiler; instead, they manipulate much lower-level discrete digital components
like LUTs, registers, etc. Again, this is important to remember moving forward — while programmers write software
code, FPGA designers ‘code’ physical hardware present on the FPGA itself.

The smallest component on an FPGA is the simple logic gate. Of course, discrete logic gates do not physically exist
inside an FPGA — instead, FPGAs calculate Boolean algebra using look up tables (LUTs) as truth tables, where each
LUT can calculate any Boolean algebra equation based on the number of inputs. A typical FPGA will have thousands
of three, four, and five-input LUTs. More about Boolean algebra and logic gates here.

By combining multiple logic gates together, we can create truth tables that achieve more complicated functions. One
of the most common examples is a D flip-flop, a logic component that changes the output Q based on the input D.
The FF stores the current value on the D data line, essentially acting as a basic memory cell. FFs use sequential or
registered logic, meaning that it operates based on the regular transitions of a clock, driven by the clock input line (>).
FFs register data from D to Q on a clock’s rising (or falling) edge, or when the clock transitions from 0 to 1 (or 1 to 0).
With multiple flip-flops (or registers in this case) all acting as data storage elements, they collectively store the current
state of the entire FPGA, including counters, state machines, and evaluations of other components. If an FPGA only
had LUTs without any FFs, the FPGA would have no memory, forced to immediately evaluate all changes on any
inputs and preventing any saved programs from working (meaning that our multiplication example from before would
no longer function).

In a similar manner, a gated D latch is a simpler non-clocked flip-flop that is also used to store state information. A D
flip-flop uses a clock signal to transfer data, while a latch simply checks an E enable input line. As before, input D is
the data input line, containing the value to transfer to output Q (or Q bar, the opposite of Q). Q only receives the value
on D when Enable is HIGH or 1 — when E is 0, output Q is considered ‘latched’ and will not change regardless of
input D.

Note: Latches are often created unintentionally from incomplete assignments, so beginners are not advised to use
them until they have significant FPGA debugging experience.

From an overarching perspective, an n-bit LUT is implemented as a 2𝑛 × 1 memory component. In other words, 2𝑛

SRAM latches hold the value of each LUT input combination, creating a larger general purpose truth table. Each latch
is controlled by a 2𝑛 × 1 multiplexer, or mux, which is a simple logic component that chooses which of its multiple
inputs to transfer to its output line. LUT inputs into the mux control determine which latch values are passed to output
Q. For example, 16 latches store multiple values in memory and feed into a 16 by 1 mux. The mux also receives
control inputs that determine which latch is pushed to the output.

For example, given a 4-input truth table with 16 rows, for the input ABCD = 0101, the output Y will be 17.

4 From Abels, S. G., & Khisamutdinov, E. F. (2015). Nucleic Acid Computing and its Potential to Transform Silicon-Based Technology. DNA
and RNA Nanotechnology, 1(open-issue), 13-22.

5 More about flip flops and their diagrams are here.
6 From Abdel-Lattif, G. Y., Rehan, S. E., & Abdel-Fattah, A. F. I. (2012). OPTIMIZED SINGLE-ELECTRON NAND-BASED D-

LATCH/FLIP-FLOP. The Mediterranean Journal of Electronics and Communications, 8(4).
7 More about LUTs here.
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Fig. 5: Summary of common logic gates/truth tables4
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Fig. 6: Summary of a D flip flop5

Fig. 7: Summary of a D latch6
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Fig. 8: Abstracted block diagram of a look-up table
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A flip-flop then stores the LUT’s output. One last multiplexer decides, based on the given configuration, whether
the output receives the value from the flip-flop or directly from the LUT itself. As a whole, all components make
up a single configurable logic block (CLB). Like the introductory video, these logic blocks are routed togther using
switching blocks to finally make up the entire FPGA floorplan8.

1.4 The Basics of Hardware Emulation and HDLs

As we have discussed at length, FPGAs provide an unparalleled combination of performance and flexibility that rivals
even the most expensive processors (of course, industry-grade FPGAs cost quite a bit too). This reprogrammability
allows FPGAs to excel at one of their most interesting applications — hardware emulation or the method of copying
the behavior of another hardware sample. Referring to our Apple M1/Qualcomm 888 example, instead of manufactur-
ing new designs on the assumption that they will work 100% of the time, most if not all semiconductor companies first
use FPGAs to emulate their chips. Hardware emulation allows these manufacturers to debug their designs in simulated
but realistic conditions before undertaking the extreme cost of mass fabrication. By chaining multiple FPGAs together
(sometimes up to the scale of entire rooms for one chip alone), these companies are able to logically simulate even the
most complex integrated circuits in real time, testing both hardware performance and software compatibility. Modern
GPUs and CPUs have billions of transistors, so ultimately hardware emulation is and will continue to be an essential
part in the semiconductor industry.

Hardware emulation is achieved through a number of steps. First, the design is created from HDL code, also known as
a hardware description language. Similar to traditional programming languages like C or Python, an HDL like Verilog
or VHDL instantiates the FPGA’s physical hardware using digital code. HDLs execute instructions in parallel, while
software languages operate in sequential order. Designs are then synthesized, wherein the human-understandable
code is converted in a netlist of connected logic gates or flip-flops. Essentially, synthesis acts the same as compiling
software code to machine assembly code.

Place and route (P&R), or implementation, is a set of multiple procedures in which the list of nets is physically placed
and mapped to the FPGA’s resources. Implementation creates a roadmap where each element can be placed onto the

8 FPGA floorplan from this info page.
9 More about NVIDIA’s emulation lab in this blog post.

10 Details about the FPGA design flow here.
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Fig. 9: An entire room-scale Cadence Tigris emulator9

Fig. 10: Simple example of HDL synthesis10
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FPGA chip. At the end, the software will output a bitstream that designers can program onto the FPGA for further
testing. Both synthesis and implementation are typically done with first-party software, although synthesis can be
completed with third-party alternatives.

Fig. 11: Simple example of P&R11

Finally, the tasks of simulation and verification provide useful debugging methods along the entire development
process. Verification is a multi-stage procedure from writing a testbench or set of tests in HDL code that checks the
design against a given specification to testing for timing concerns. Behavioral simulation is one aspect of verification
that simulates an environment based on the testbench and outputs relevant signal waveforms. Do not worry if you
have little experience with reading waveforms or using an oscilloscope, as we will be explaining our simulation tests
in every example project we provide using Vivado’s ModelSim. This article will not go into SystemVerilog and UVM,
as that is outside the scope of this entire project.

Fig. 12: Simulating an 8-bit binary counter

Of course, going through the entire process from synthesis to bitstream for every single hardware component is time-
consuming, especially if you are repeatedly working with the same FPGA. It would more efficient and easier to first
create the infrastructure first in the form of an emulation environment. This would include peripherals like the board
memory or PCIe pinout, which never change between designs. After all, if you end up working with the same board,
why start from scratch for every project? A premade environment allows us to get a running start for every future
project onwards, which is why setting up such an environment is our first example project.

11 Venugopal, N., Shobana, V., & Manimegalai, R. (2014, January). Analysis of optimization techniques in FPGA placement. In 2014 Interna-
tional Conference on Computer Communication and Informatics (pp. 1-5). IEEE.
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Note: Don’t worry if you don’t have access to a physical FPGA board — 90% of design work is done in simulation
anyways!

After the environment is completed, we will continue to guide you through creating and simulating a device under test
(DUT), letting you emulate everything from a simple counter to a complex SoC.

Important: Jump here to get started with your environment. Otherwise, continue to the next page for a deeper
introduction into the hardware.

What is a real-world example of hardware emulation? One interesting application that has evolved in the last few
years is the MiSTer project, an open-source design that emulates old video game consoles using nothing more than a
small FPGA board. Using the same principles as software emulation, the MiSTer project emulates multiple reversed-
engineered consoles on a single Altera Cyclone FPGA, opening the opportunity for a home arcade at a fraction of
the price. Instead of paying hundreds of dollars for a new and working Nintendo Famicom Disk System, which was
never released in the West, or use software emulation to run code in a similar fashion, the FPGA board can instead
emulate the console hardware itself and play every game that was ever released with the same level of performance
and compatibility. Of course, since FPGAs are flexible, an FPGA can reconfigure itself through LUTs to emulate
other hardware. This means that different console cores from Atari to Pac-Man can be swapped out at any time, again
illustrating the versatility of FPGAs and serving as a good example for our emulation environment project. By building
up the proper infrastructure, it would become easy in the future to swap in different DUTs like the MiSTer cores for
testing and debugging, similar to standard industry practices in the semiconductor field. All without even touching the
original hardware.

Fig. 13: Emulating an NES game console on an FPGA12

12 More about the NES FPGA project here.
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1.5 Quick Definitions and Acronyms

IC [Integrated Circuit] Collection of electronic components on a single unit, typically made from silicon, also known
as a chip.

FPGA [Field Programmable Gate Array] ICs designed to be configurable by engineer after manufacturing.

ASIC [Application Specific Integrated Circuit] Highly specialized ICs dedicated to one specific application.

SoC [System on a Chip] IC that hosts an entire computer system by itself.

P&R [Place and Route] Process by which logic components are placed onto an FPGA and connected/routed together.

DUT [Device Under Test] Any electronic part currently being tested, through emulation in our case.

IP [Intellectual Property] Commonly used electronic parts abstracted as logic blocks, provided by external companies
(not the same as a patent).

AXI [Advanced eXtensible Interface] Communication standard that allows chip components to send signals to each
other.

MIG [Memory Interface Generator] Xilinx IP that allows an FPGA to read/write into DDR memory.

DDR SDRAM [Double Data Rate Synchronous Dynamic Random-Access Memory] Volatile memory IC typically
used to store information that is lost when power is lost, common interfaces are DDR3 and DDR4.

PCIe [Peripheral Component Interconnect Express] Communication network that allows an FPGA to control periph-
erals/communicate with a host PC.

TLP [Transaction Layer Packets] Data payloads that peripherals send through the PCIe bus.

DMA [Direct Memory Access] Xilinx IP that allows AXI peripherals to directly access memory without the help of
the processor.

ROM [Read Only Memory] Flash memory that cannot be modified afterwards.

1.6 References
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CHAPTER

TWO

AXI PROTOCOL OVERVIEW

2.1 The AXI Protocol

When building your first block diagram or reading the documentation of Xilinx’s IP cores, you may notice one thing
in common – they all use the AXI protocol. This article will provide a brief explanation about what AXI is and how it
functions.

The Advanced eXtensible Interface, or AXI, protocol is a royalty-free communication standard developed by ARM, a
prolific system-on-chip (SoC) company, as part of the AMBA (Advanced Microcontroller Bus Architecture) standard.
You can find more information about AMBA and its other protocols (such as AHB or APB) here.

Essentially, the AXI protocol outlines the process by which on-chip components can communicate with each other
using signals, usually involving a master and slave device. By standardizing this protocol, we can ensure every
peripheral and IP core present on an FPGA will be able to talk to each other, creating a cohesive system (rather than a
scattered collection of cores).

There are three types of AXI4 interfaces (defined by AMBA 4.0):

• Full AXI4 - High-performance communication, using memory-mapped addresses (more here).

• AXI-Lite - Lightweight and simple memory-mapped interface, used for single transaction communication.

• AXI4-Stream - ‘Direct’ device communication, removing the need for addresses and allowing for maximum
data transfer.

For the remainder of this article and throughout our projects, we will mainly focus on Full AXI4 for the best
performance-cost ratio.

2.2 AXI Reads and Writes

Memory Addresses

Example of how AXI can control devices using addresses.

Both pure data and commands (like toggling an LED) can be sent on the data bus.

Address Purpose
0x00000 Config
0x10000 LED1
0x20000 DDR Reg
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AXI4 allows for multiple data transfers over a single request, allowing for greater data bandwidth in the scenario
where large amounts of data must be transferred to/from specific addresses. This multi-transfer request is also known
as a burst.

All AXI communication is with respect to memory addresses, which each have a specific purpose defined by the RTL
and top module.

Three burst types are supported - FIXED, INCR, and WRAP. Each one alters the transfer address in a specific way,
allowing for optimal transfers in different situations. For example, a FIXED burst sets every beat to have the same
address, which is useful for memory transfers from the same repeated location.

In general, burst addressing specifies where each read or write should be performed in which addresses. Each burst
type is as follows1:

Fig. 1: AXI Bursts

AXI4-Lite has no burst protocol (only sending one piece of data at a time) while AXI4-Stream acts as a single unidi-
rectional channel for unlimited data flow between a master and slave, removing the need for addresses.

2.3 AXI4 Connections and Channels

In its most basic configuration, the AXI protocol connects and facilitates communication between one master and one
slave device. As expected, the master initiates and drives data requests, while the slave responds accordingly. This
communication, or transactions as we will now refer to, occurs over multiple channels, each one dedicated to a specific
purpose.

Fig.
2:
AXI
Hand-
shake
Pro-
to-
col

The sender must always assert a VALID signal before the receiver and keep it HIGH until the handshake is com-
pleted. By using handshakes, the speed and regularity of any data transfer can be controlled.

There are five channels, each one transmitting a data payload in one direction. Each channel implements a handshake
mechanism, wherein the sender drives a VALID signal when it has prepared the payload for delivery and the receiver
drives a READY signal in response when it is ready to receive the data. The data transfer is also known as a beat.

The five AXI4 channels are as follows:

• Write Address channel (AW): Provides address where data should be written (AWADDR)

• Can also specify burst size (AWSIZE), beats per burst (AWLEN + 1), burst type (AWBURST), etc.

• AWVALID (Master to Slave) and AWREADY (Slave to Master)

• Write Data channel (W): The actual data sent (WDATA)

• Can also specify data and beat ID

• Sender will always assert a finished transfer when done (WLAST)

• WVALID (Master to Slave) and WREADY (Slave to Master)

´ Write Response channel (B): Status of write (BRESP)

´ BVALID (Slave to Master) and BREADY (Master to Slave)

´ Read Address channel (AR): Provides address where data should be read from (ARADDR)

´ Can also specify burst size (ARSIZE), beats per burst (ARLEN + 1), burst type (ARBURST), etc. ARVALID (Master
to Slave) and ARREADY (Slave to Master)

´ Read Data channel (R): The actual data sent back
1 AXI example images used from Wikimedia Commons and the AXI Article.
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´ Can also send back status (RRESP), data ID, etc. Sender will always assert a finished transfer when done (RLAST)
RVALID (Slave to Master) and RREADY (Master to Slave)

Here
is
an
ex-
am-
ple
of
a
typ-
i-
cal
read/write
AXI
trans-
ac-
tion.

••••••••••
To
write,
the
mas-
ter
first
pro-
vides
the
ad-
dress
(0x0)
to write to, as well as the data specifications (4 beats of 4 bytes each, data type of INCR). Both the master and
slave then exchange a handshake for verification.

•
The
mas-
ter
then
pre-
pares
and
writes
the
ac-
tual
data
pay-
load
to
send
over
the
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chan-
nel
(0x10,
0x11
0x12,
and
0x13),
again
us-
ing
a
hand-
shake
to
ver-
ify
the
trans-
fer.
The
mas-
ter
will
sig-
nal
the
end
of
the
pay-
load
to
the
slave
us-
ing
WLAST.

•
The
slave
re-
sponds
with
a
sta-
tus
of
the
write
and
whether
it
was
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suc-
cess-
ful
or
a
fail-
ure
(all
OKAY
in
this
case)
and
fin-
ishes
the
en-
tire
trans-
ac-
tion
with
an-
other
hand-
shake.

Fig. 3: A typical AXI Write transaction

• To read, the master first provides the first address to read from (0x0), as well as the data specifications (4 beats
of 4 bytes each, data type of INCR). The usual handshake occurs.

• The slave then provides the actual data payload, as well as the status of each beat (all beats are OKAY). The
slave will signal the end of the payload to the master using RLAST. As we can see, what was written to the
specified addresses was the same as what was read back.

Fig. 4: A typical AXI Read transaction

We can also get an idea about what an AXI read and write cycle would look like in simulation through the 7 Series MIG
documentation (UG586). As we can see, an AXI write consists of a command cycle (define address and burst length),
data cycle (putting the data payload over the channel), and a response cycle (checking if the data was received). The
master defines the payload specifications and writes the actual data payload (5a5aa5a5 at address 00000000). The
slave toggles s_axi_bvalid, exchanging a handshake that signifies the transfer was successful.

Subsequently, an AXI read consists of a read command cycle (again, defining the address to read from, burst length,
etc.) and a read data cycle (receiving the data from the requested address). The master specifies the address (00000000)
and other payload specs, receives the data payload from the slave (5a5aa5a5), and exchanges a final handshake by
toggling s_axi_rlast to complete the transfer.

2.3. AXI4 Connections and Channels 21
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Fig. 5: AXI Write Cycle in Simulation

Fig. 6: AXI Read Cycle in Simulation
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2.4 AXI Interconnect vs. SmartConnect

AXI is a very flexible standard in that it only outlines the interface itself, never requiring a designer to memorize mul-
tiple configurations for every scenario. This characteristic is exemplified with the introduction of the AXI Interconnect
IP.

The AXI Interconnect IP is similar to an operating system in that both mediate data and resource transactions between
two independent entities. The Interconnect IP is made up of a combination of arbiters, decoders/routers, multiplexers,
and other logic elements that seamlessly adapts to any AXI system, whether it be a multi-master system connected to
one slave, a multi-slave system connected to one master, or multiple masters connected to multiple slaves (up to 16
each).

Fig. 7: AXI Interconnect Configurations2

The AXI Interconnect is also known as a network-on-chip (NoC). There are many technical details about NoCs that
we will not go into here, such as topology and routing strategies, but the only characteristic to keep in mind is that
NoCs use packets, not wires, to route data from the source to the destination. While traditional Verilog instantiates
connections between modules as wires and sends electrical signals as communication, NoCs like the Interconnect or
SmartConnect utilize the AXI protocol to route signals and data payloads from the master to the appropriate slave
device. The NoC architecture has multiple routers connnected by wires or links with an array of processing elements
or PEs built on a mesh topology. This creates a scalable architecure that has a higher bandwidth than connecting each
module individually.

For a multi-master/slave system, the Interconnect will contain multiple arbiters and routers so that each write and read
channel has a dedicated connection between masters and slaves — by doing this, both reads and writes can occur
simultaneously. This is also known as an AXI Crossbar core. A typical Interconnect transaction would occur in this
manner:

• As always, the master first provides the address for a write transfer onto the AW channel. The write transaction
arbiter decides which master can monopolize the Interconnect Write channel and sends the master’s address to
the router.

• Using a preallocated address decoding table, the router then decodes the given address and selects the proper
slave to write the address to. The typical AXI write transaction then commences, with an Interconnect multi-
plexer mediating a data transfer between master and slave.

• At the same time, another master can provide a different address to read from on the AR channel. The read trans-
action arbiter can also decide which master monopolizes the Interconnect Read channel, sending that master’s
address to a different router.

2 AXI Interconnect documentation from Xilinx here.
3 From Sudeep Pasricha (Colorado State), Nikil Dutt (UC Irvine) “On-Chip Communication Architectures”, Morgan Kaufmann, 2008
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Fig. 8: AXI Interconnect NoC topology3

• This second router also decodes the given address and selects either the same or a different slave to read from.
An AXI read transaction then starts with another Interconnect multiplexer as a mediator.

The Interconnect IP works on a round-robin basis, wherein the read and write channel will alternate for access if
multiple masters are trying to write to/read from the same slave. Since the DDR protocol allocates a few clock cycles
between reads and writes, the IP cannot immediately switch channels. Because slaves can queue multiple transactions
and this round-robin schedule allows for out of order transfers (a slave device can respond to a master whenever), a
deadlock risk emerges. Deadlock is a scenario where a transfer #1 cannot fully complete while transfer #2 is running.
To finish, #2 requires transfer #1 to complete first, creating an endless loop that is never resolved. You can read more
about the Dining Philosophers Problem here.

From the Xilinx’s Interconnect Documentation2, we can see how a deadlock situation can form:

1. Master M1 reads from Slave device S1 using ID0.

2. Master M1 then reads from Slave device S2 using the same ID thread ID0.

3. Master M2 then reads from Slave device S2 with a different ID ID1.

4. Master M2 then reads from Slave device S1 using the same ID thread ID1.

5. Slave S1 responds to Master M2 first. It is allowed to respond to M2 before M1 first, since the two Masters have
different IDs. However, the AXI Crossbar cannot pass the response to M2 because Master M2 must first receive
its response from Slave S2.

6. Slave S2 responds to Master M1 first without re-ordering. But the AXI Crossbar cannot pass the response to
Master M1 because M1 must first receive its response from Slave S1, resulting in a deadlock situation.

Helpfully, the AXI Interconnect IP already resolves this concern by mandating the “Single Slave per ID” rule, where
generally only one master device can talk to any slave at any given time. With this in-order rule, the Read transaction
in step 2 from M1 to S2 is stalled until S1 completes its response to M1. Similarly, the transaction between M2 and S1
in step 4 is stalled until S2 completes its response to M2. This is important to keep in mind as the AXI protocol itself

4 The example of Interconnect Addressing from Mohammadsadegh Sadri, PhD, can be found in this post.
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Fig. 9: AXI Interconnect Address Decoding Table4

has no in-order check between Read and Write transactions, meaning that deadlock can occur elsewhere, especially
when combining multiple Interconnects and SmartConnects together.

The Interconnect also can update AXI3 interfaces to AXI4, perform bus-width conversion, use input/output FIFOs and
register slices to break down timing paths, and convert between different clock domains. Simply put, the Interconnect
IP is a versatile core that allows a designer to utilize the AXI protocol to its fullest extent without diving deep into the
technical minutiae.

However, at the time of writing, the AXI Interconnect v2.1 core has been obsoleted by the new AXI SmartConnect
IP. The SmartConnect operates on the same AXI4 principles of the Interconnect IP, providing similar performance
with better optimization and a more streamlined experience. The AXI SmartConnect supports wider addressing and
multi-threaded traffic along with a myriad of other benefits, so while Xilinx notes that pre-existing designs with
the Interconnect v2.1 core do not need to upgrade, new designs are recommended to use the SmartConnect core
moving forward. As such, our example designs will (almost) always use the SmartConnect IP as opposed to the older
Interconnect. For more information, read the SmartConnect v1.0 documentation (PG247).

5 From Chou, H. M., Chen, Y. C., Yang, K. H., Tsao, J., Chang, S. C., Jone, W. B., & Chen, T. F. (2015). High-performance deadlock-free id
assignment for advanced interconnect protocols. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(3), 1169-1173.

6 Read more about the SmartConnect IP in this white paper.
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Fig. 10: An Interconnect deadlock situation5

Fig. 11: Example SmartConnect IP system6
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2.5 AXI Verification IP

With some of our example designs, we have chosen to use the AXI Verification IP or AXI VIP as a test DUT. The
VIP, which is provided by Xilinx, is a useful AXI4 core that allows us to debug our block designs and verify for
expected behavior. It is the successor to the now obsolete AXI Bus Functional Model or BFM and all new designs
will use the VIP moving forward, as the BFM is no longer available. The VIP can be dropped into any design and
simulate a master, slave, and pass-through device (connecting a Slave to Master). It has one (optional) active LOW
reset aresetn which is synchronous to aclk. This IP is mainly for simulation and is not synthesized. We will be
using the VIP to verify data transactions in simulation and overall it is a good introductory method for catching errors
in any custom AXI IPs (although the VIP suite is prone to missing some background transfer errors). While setting up
the emulation environment and custom DUTs, we will be using the VIP to monitor and generate AXI transactions, as
well as check for protocol compliance.

Fig. 12: Example AXI system with VIP7

2.6 References

7 More about AXI BFM architecure here (modified image).
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CHAPTER

THREE

LEGACY PCI AND PCI EXPRESS

Important: This article covers the PCI and PCIe buses. You can read about the specific AXI PCIe MM IP here.

3.1 Peripheral Component Interconnect

If you ever have built or looked inside a desktop, you may have noticed that a few boards connected to the motherboard
all use the same interface. Since the 1990’s, computers have utilized the Peripheral Component Interconnect or PCI
bus to attach additional components and hardware devices via expansion slots. Modern examples include graphics
processing unit (GPU) boards and enthusiast-grade sound cards.

Fig. 1: An example PCIe expansion card with x16 width

The PCI format allowed computer manufacturers to build and sell peripherals with a standardized format that was
compatible with all motherboards and independent of any processor’s requirements, essentially creating a plug-and-
play system. The legacy PCI bus and its upgraded version PCI-X were eventually made obsolete by their successor
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PCI Express, which we currently use in 2021.

Although many PCI peripherals are now integrated into the motherboard itself or available as external USB devices,
the PCI bus remains relevant today due to its widespread usage among industrial and enthusiast fields. Since PCIe is
backwards compatible with its older standards and builds upon PCI concepts, we will first examine the fundamentals
of the legacy PCI standard.

3.2 PCI Overview and Background

As a component bus (a bus is essentially communication between multiple components), all PCI concepts revolve
around maintaining and processing transactions between peripherals and the processor (CPU). The PCI bus can be
thought of as a traffic light, controlling the flow of data transactions between devices while other peripherals must
wait for their turn to use the PCI bus. The external PCI bus works in tandem with the system bus, which allows
internal computer components like the CPU or RAM to communicate with each other, and other external buses like
the Universal Serial Bus, such as connecting a printer using an external USB cable.

Legacy PCI is synchronous, in that all events occur on the edge of the computer’s internal clock. A device would
begin a data transaction and specify a start memory address, taking one clock cycle. Sending the data itself would take
multiple cycles until the transaction finished, at which point the connection was ended.

Fig. 2: Abstraction of a computer’s core architecture

The
PCI
bus
op-
er-
ates
on
a
master-
slave
re-
la-
tion-
ship,
where
the
Bus
Mas-
ter
is
the
agent
that
ini-
ti-
ates
the
trans-
ac-
tion (either the CPU or PCI boards) and the slave is the Target Device. Many modern devices have Bus Mastering
capabilities, so an example transaction could involve a keyboard acting as a Bus Master to write data into main
memory (the Target Device). This relationship can be further elaborated upon by looking at a motherboard’s core
architecture.
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The northbridge or host bridge represents the core logic chip on the PC’s motherboard that is ‘north’ of the central
PCI bus. The northbridge interfaces between the CPU, system memory, the AGP (graphics) bus, and high-speed PCI
bus. The northbridge’s Bus Arbiter receives requests from all initiators (Bus Masters), decides which requester should
monopolize the PCI bus, creates the transaction channel between the initiator and Target Device, and assigns a ready
pin (GNT#).

The southbridge serves as the I/O controller hub, hosting all system I/O and connecting the PCI bus to external
peripherals. It also provides system signals like reset, clock, and error reporting. From the southbridge, Bus Masters
representing a peripheral can submit a request to use and monopolize the PCI bus. Each Bus Master has a pair of pins
that they can request with (REQ#) or know when the bus is available to use (GNT#).

3.3 The Legacy PCI Bus Cycle

As mentioned before, Legacy PCI is synchronous as in events occur on clock edges. To illustrate this bus cycle better,
we will examine a simple example of a typical bus transaction. Rising clock edges are marked with dotted lines
whenever signals are driven or sampled.

Note: Signals with # are active LOW, signals without are active HIGH.

• CLK Edge 1 - FRAME# (Bus Access) and IRDY# (Initiator Ready for data) are inactive, so PCI bus is idle.

• GNT# is active, showing that bus arbiter has selected this device to be the next initiator / Bus Master

• CLK Edge 2 - FRAME# is asserted by the initiator, indicating that a new transaction has started.

• Initiator drives address and command for the transaction, other devices on bus will decode address to determine
if they are being requested

• CLK Edge 3 - Initiator indicates that it is ready for data transfer by asserting IRDY# to active low

• Arrow on AD bus shows that bus is undergoing turn-around cycle as ownership of signals changes (initiator
drives address but also reads data on same pins)

• TRDY# is not driven low on the same edge as AD changing to avoid possibility of both buffers trying to drive a
signal simultaneously, which can cause damage from shared signals

• CLK Edge 4 - Device on bus has recognized requested address and has asserted DEVSEL# (device select) to
proceed with transaction

• Also asserts TRDY# (target ready) to drive first part of read data onto AD bus

• Since both IRDY# and TRDY# are active at the same time, data begins transferring on that clock edge

• Initiator knows how many bytes will eventually be transferred, but target does not, so the target must check
FRAME# to see if it is still asserted or not (will become inactive when done)

• CLK Edge 5 - Target is not ready to deliver next set, so it de-asserts TRDY# for one clock cycle and enters a
Wait State

• CLK Edge 6 - Second data item is transferred, and since FRAME# is still asserted, the target knows that the
initiator is still requesting for more data

• CLK Edge 7 - Initiator forces a Wait State, allowing device to pause a transaction and either quickly fill or empty
a buffer without stopping the request

• Often very inefficient as they will both stall their current transaction and prevent bus access to other devices

• CLK Edge 8 - Third data set is transferred, FRAME# is de-asserted so transaction is finished, at CLK edge 9 all
control lines are turned off and bus becomes idle again
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Fig. 3: Example Legacy PCI bus cycle
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FOUR

DDR MEMORY AND SDRAM

4.1 What is RAM?

Inside any computer, phone, tablet, or other electronic device, it is almost guaranteed that there will be some sort of
RAM inside that device. In fact, if you have ever looked inside a PC computer before, then you have most likely seen
what a physical piece of RAM looks like. Below is an example of a DDR3 SDRAM component, and these can be
purchased at most electronics stores (see Figure 1). The DDR stands for “Double-Data Rate”, and the SDRAM stands
for “Synchronous Dynamic RAM”. These are just terms used to describe the process of how the RAM stores data,
and they will be explained in more detail further down.

Fig. 1: Figure 1: Example DDR3 SDRAM Component

RAM stands for “Random-Access Memory”, and like all memories, it’s main purpose is to store information for future
use. In your computer, for example, you should be able to check how much RAM is currently installed by going to
your device settings. The more RAM that your computer has, the faster that it will be able to load programs and
applications.
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Almost all RAM components are “volatile” memory devices, which means that any stored data will be lost once the
RAM loses power. Because of this, RAM is often used to store temporary data, such as program or application data.
For more permanent storage of information, another type of memory such as “Read-Only Memory” (ROM) can be
used instead. A good example of ROM is a CD disk, which is initially programmed with data (music, video, games,
etc.) and is not meant to be overwritten (see Figure 2).

Fig. 2: Figure 2: Example of CD ROM

Most computers have both RAM and ROM components inside them, as RAM is needed for storing pro-
gram/application data and ROM is needed for storing permanent instructions (i.e: boot-up instructions). They both
have their own advantages and disadvantages, and so there is always a tradeoff between speed and volatility. While
RAM components are generally much faster than ROM components, ROM has the ability to retain information even
after power has been removed from the device.
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4.2 Different Types of RAM

RAM can come in all shapes and sizes, but the two most common types of RAM are “Static RAM (SRAM)” and
“Dynamic RAM (DRAM)”. While both SRAM and DRAM are effective at storing temporary data, the main difference
between them lies in how each of them store this data. SRAM is referred to as “static” because it is made up solely
of transistors. DRAM, on the other hand, uses capacitors to store the data. Both have their own advantages and
disadvantages, and so let’s take a closer look at each type of RAM.

4.3 SRAM

Looking at the figure below (figure 3), we can see what a typical SRAM cell configuration looks like. The parts labeled
M1 through M6 are MOSFET transistors, the line labeled WL corresponds to the “Write Line”, and the line labeled
BL corresponds to the “Bit Line”. The write line and the bit line are used simultaneously to control the read and write
operations of the SRAM. For example, if we wanted to write a new bit value into this SRAM cell, we would simply
place the desired bit value on the bit line (1 or 0), and then we would place a 1 on the write line to enable the write
transaction.

Fig. 3: Figure 3: Typical SRAM Cell Configuration

The primary advantage of using SRAM components is that they are much faster than DRAM components. However,
with the advantage of being faster, they are also much more expensive to manufacture. Therefore, SRAMs are typically
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only used for small amounts of memory that really need that extra speed. For example, a standard use of SRAM is
for your computer’s cache memory, which stores frequently-used instructions and data for faster fetching by the CPU.
Have you ever noticed that after you restart your computer, it takes slightly longer to load any given website? This
is because your computer has information stored inside its cache that allows the website to load faster, and when you
restart your computer, you are also clearing that cache memory.

4.4 DRAM

In comparison to SRAM components, DRAM utilizes capacitors in order to store memory. The typical configuration
of a DRAM cell can be seen below in figure 4, and as you can see, the configuration appears to be much simpler than
the SRAM cell. The bitline and the worldline are still present, and they are utilized in the same way as the SRAM
cell. However, there are not nearly as many transistors required for the DRAM cell, which means that the cost to
manufacture a DRAM component is far less than that of an SRAM component.

Fig. 4: Figure 4: Typical DRAM Cell Configuration

The fact that DRAM components are much cheaper than SRAM components make them a great choice for storing
large amounts of data. For example, when you purchase a large piece of RAM like the illustration in figure 1, you
are purchasing DRAM (the term “SDRAM” refers to Synchronous DRAM). While SRAM components like cache
memory are typically in the kilobyte to low megabyte range, DRAM components can go all the way up to gigabyte
range. The primary disadvantage of DRAM is that it is usually slower than SRAM, and this is due to the effects of
using a capacitor. Over time, capacitors can begin to slowly discharge, and this can be very bad if it causes the stored
data to be lost. In order to prevent this, DRAM components have to be constantly “refreshed”, which essentially just
means that the current data values have to be re-written into the capacitors.
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4.5 The DDR SDRAM Protocol

If you look back to our example in figure 1, you’ll notice the specific memory part is called “DDR3 SDRAM”. Well,
now that we know what DRAM is, let’s take a look at the rest of this name. First, let’s look at the term “SDRAM”.
While this name may look similar to the Static RAM (SRAM) discussed earlier, it is actually referring to something
very different. In a typical DRAM cell, there is no clock associated with the read and write transactions. However,
digital electronics engineers are very fond of using clocks to keep everything synchronous in their designs, and so
Synchronous DRAM (SDRAM) was created. This essentially means that read and write operations will only be
processed on the rising edge of an associated clock.

Now that the read and write operations have been synchronized, a lot of the messiness has been cleaned up that could
potentially occur from doing multiple asynchronous transactions. However, only sending data on one edge of a clock
is rather slow, and it wastes time that could potentially be used for processing other transactions. Therefore, the Double
Data Rate (DDR) protocol was created, and this process allows data to be sent on both the positive and the negative
edge of an associated clock. This process can be seen below in figure 5.

Fig. 5: Figure 5: DDR SDRAM vs SDRAM Protocols

There have been many variations of the DDR SDRAM protocol, and the term “DDR3” refers to the third generation of
this protocol. At this current time in 2021, DDR5 is the most current and up-to-date DDR protocol, and it was released
in July of 2020. However, DDR3 and DDR4 are both still used widely in electronics today.

Specific information about timing, signals, resets, and more can all be found in the DDR3 SDRAM High-Performance
Controller User Guide from Intel. For example, let’s take a look at this DDR3 Timing Diagram seen below in figure 6.

At the top of this diagram is the memory clock, which is what the DDR memory device uses to clock its transactions.
Then, right below the clock are the memory chip select signal, the row-address strobe signal, the column-address strobe
signal, and the write enable signal. All four of these signals are used to set up or initialize the desired read or write
transaction. After these signals come the memory bank bus and the memory address bus, and these point specifically
to the memory location that you would like to read or write from. Finally, the memory strobe signal indicates when
the data is being transferred, the data bus contains the specific data, and the memory data mask signal indicates which
bytes of data should actually be transferred. For a greater description of these signals, see the attached “Table 4-6
DDR3 SDRAM Interface Signals” from the DDR3 SDRAM High-Performance Controller User Guide.
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Fig. 6: Figure 6: DDR3 Timing Diagram
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CHAPTER

FIVE

CLOCKS, CLOCKING WIZARD, AND TIMING

Note: This page is currently under construction.

5.1 Clocks and Clock Conversion

Square wave with 50% duty cycle, can be 0 or 1 Determines how fast the design will run, drives all sequential logic
(flip-flops, RAMs, FIFOs) Can have multiple clock domains in a single FPGA

5.2 Clock Tree

A dedicated input pin is used for clock signal, dedicated routing, logic used to minimize skew

Skew is difference in time between when it arrives at one FF to when it arrives at another FF, skew should be as small
as possible

Clock tree network distributes the clock via dedicated routing signals to all FFs within the design

5.3 Multiple Clocks in an FPGA

Best to avoid multiple clocks for beginners

Usually only need different clocks if interfacing to some external component that requires it Ex. SDRAM, camera,
special sensors Can use phase-locked loop (PLL), takes in reference clock to branch off into a different frequency

Typically use only one clock and Clock Enable signal Ex. UART has 19200 baud rate but don’t need dedicated 19.2
kHz clock, just run a 50 MHz clock in intervals with counter

Never drive the clock of a FF off the output of another FF Use one central clock and parse through data with Clock
Enable pulses Ex. input clock of 40 MHz, ADC runs of 10 Mhz, divide input signal by 4 and pulse once during output
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5.4 Propagation Delay

Amount of time it takes for a signal to travel from a source to a destination Rule of thumb: signals can travel one foot
of wire in one nanosecond Physical length of wires on board can be over a foot long, meaning that every portion of
logic will take some finite delay time Propagation delay directly relates to sequential logic driven by a clock

Amount of time it takes from the output of one FF to travel to the second FF is the propagation delay The further apart
or the more logic between the two FFs, the longer the delay, and the slower the clock is able to run Both FFs use the
same clock, output of first FF at clock edge 1 should drive the second at clock edge 2 2 FFs that are 10 ns apart, a 50
MHz clock (20 ns period) will be fine while a 200 MHz clock (5 ns period) is not

FPGA timing analyzer will spot any timing errors Fix high propagation delay Slow down clock frequency Break up
logic into stages through pipelining

Breaking up the logic between 3 FFs allows only half of the logic to be done between 2 FFs at a time Tools will have
almost twice as much time to execute in a single clock cycle, also known as pipelining

5.5 Setup and Hold FF Time

Setup time - amount of time required for the input to a FF to be stable before a clock edge Hold time - minimum
amount of time required for the input to a FF to be stable after a clock edge

Setup time, hold time, and propagation delay all affect FPGA design timing Minimum period of FPGA clock (and
frequency where F = 1/T) can be calculated through tclk (min) = tsu + th + tp Generally, setup and hold time are fixed
for FFs, so propagation delay is variable The more logic, the longer the propagation delay will be and the higher the
clock period will be, leading to a slower frequency

If there are setup or hold time violations, the FF output is not guaranteed to be stable (could be 0, 1, or something
else), also known as metastability Can check for metastability through placing and routing and timing analysis

5.6 Metastability Prevention

5.7 Clock Domain Crossing (CDC)
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SIX

LINUX DRIVERS, KERNEL PROGRAMMING, AND YOU

6.1 What is a Driver?

Software drivers play a critical role in how we use computers and electronics on a daily basis, yet most users never
consider the complexity of driver development. As a very brief introduction, we will conceptualize a driver as any
software component that lets the operating system or OS (such as Linux or Windows) communicate with an external
device, like a keyboard. These devices can represent either physical hardware or other software tools. A driver allows
user applications to interact and exchange data with other devices through the OS. For a more in-depth introduction to
drivers and driver development, read this quick article from Microsoft here.

Device drivers are parts of the operating system that facilitate the usage of hardware devices via certain programming
interfaces so that software applications can control and operate the devices. As each driver is specific to a particular
operating system, you need separate Linux, Windows, or Unix device drivers to enable the use of your device on
different computers (this is why a career in driver development and embedded systems is often lucrative).

The first step in driver development is to understand the differences in the way each operating system handles its
drivers, underlying driver model, and architecture it uses, as well as available development tools. For example, the
Linux driver model is very different from the Windows one. While Windows emphasizes abstraction and separation
between drivers and the host OS, Linux device drivers are often embedded within the OS kernel itself, as they are not
built off a stable API. Each of these models has its own set of advantages and drawbacks, which is important to keep
in mind while writing and analyzing drivers for each major OS.

Xilinx’s DMA PCIe Drivers are available for both Windows and Linux. However, throughout this article and subse-
quent software tutorials, we will focus on the Linux OS and similar Unix distributions for its versatility and open-
source nature.

Fig. 1: Simple Block Diagram of a driver1

1 Driver introduction from Microsoft here.
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Throughout this article, we will constantly reference the Linux kernel, kernel mode, and virtual memory. More
information about these topics can be found in this article.

6.2 Linux Driver Architecture and APIs

Linux is an open-source operating system, thus the entire source code of Linux is the SDK for driver development.
There is no formal framework for device drivers, but the Linux kernel includes numerous subsystems that provide
common services like driver registration. The interfaces to these subsystems are described in kernel header files.

While Linux does have defined interfaces, these interfaces are not stable by design. Linux does not provide any
guarantees about forward or backward compatibility. Device drivers are required to be recompiled to work with
different kernel versions. No stability guarantees allow rapid development of the Linux kernel as developers do not
have to support older interfaces and can use the best approach to solve the problems at hand.

Such an ever-changing environment does not pose any problems when writing in-tree drivers for Linux, as they are a
part of the kernel source because they are updated along with the kernel itself. However, closed-source drivers must
be developed separately, out-of-tree, and they must be maintained to support different kernel versions. Thus Linux
encourages device driver developers to maintain their drivers in-tree.

Linux does not provide designated samples of device drivers, but the source code of existing production drivers is
available and can be used as a reference for developing new device drivers.

Fig. 2: Abstracted BD of a typical OS2

The core difference in the Linux device driver architecture as compared to Windows is that Linux does not have a
standard driver model or a clean separation into layers. Each device driver is usually implemented as a module that
can be loaded and unloaded into the kernel dynamically. Linux provides means for plug-and-play support and power
management so that drivers can use them to manage devices correctly, but this is not a requirement. It is worth keeping
in mind that Linux also has a Hardware Abstraction Layer or HAL above the hardware layer that acts as an interface
between the actual hardware and the OS’s device drivers.

2 More about operating systems from this computer architecture lecture.
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Modules export functions they provide and communicate by calling these functions and passing around arbitrary data
structures. Requests from user applications come from the filesystem or networking level and are converted into data
structures as necessary. Modules can be stacked into layers, processing requests one after another, with some modules
providing a common interface to a device family such as USB devices.

Linux device drivers support three kinds of devices:

• Character devices that implement a byte stream interface

• Block devices that host filesystems and perform IO with multibyte blocks of data

• Network interfaces are used for transferring data packets through the network

An important aspect of a driver is the API or Application Programming Interface it is built upon. An API is a software
intermediary that allows two applications to communication with each other. Essentially, an API is a messenger that
both delivers requests and subsequent responses between two applications. In the block diagram above, each layer
provides an API as a set of functions/commands that the layer itself provides. We are mentioning APIs to create the
distinction between drivers and APIs: drivers are low-level sections of code that run within the OS kernel itself and
allow us to talk to hardware directly, while APIs are higher-level abstraction that allow us to utilize drivers within a
human-understandable programming environment. APIs are often used in applications that are outside the scope of
this article, so an overview of APIs can be found here.

6.3 Linux Kernel Modules

At a module’s initalization, the Linux device driver lifetime is managed by the kernel module’s module_init
and module_exit functions, which are called when the module is loaded or unloaded. They are responsible for
registering the module to handle device requests using the internal kernel interfaces. The module has to create a device
file (or a network interface), specify a numerical identifier of the device it wishes to manage, and register a number of
callbacks to be called when the user interacts with the device file.

On Linux, user applications access the devices via file system entries, usually located in the /dev directory. The mod-
ule creates all necessary entries during module initialization by calling kernel functions like register_chrdev. An
application issues an open system call to obtain a file descriptor, which is then used to interact with the device. This call
(and further system calls with the returned descriptor like read, write, or close) are then dispatched to callback
functions installed by the module into structures like file_operations or block_device_operations.

The device driver module is responsible for allocating and maintaining any data structures necessary for its operation.
A file structure passed into the file system callbacks has a private_data field, which can be used to store a
pointer to driver-specific data. The block device and network interface APIs also provide similar fields.

While applications use file system nodes to locate devices, Linux uses a concept of major and minor numbers to
identify devices and their drivers internally. A major number is used to identify device drivers, while a minor number
is used by the driver to identify devices managed by it. The driver has to register itself in order to manage one or more
fixed major numbers or ask the system to allocate some unused number for it.

Currently, Linux uses 32-bit values for major-minor pairs, with 12 bits allocated for the major number allowing up to
4096 distinct drivers. The major-minor pairs are distinct for character and block devices, so a character device and a
block device can use the same pair without conflicts. Network interfaces are identified by symbolic names like eth0,
which are again distinct from major-minor numbers of both character and block devices.

3 More about device nodes in this IBM article.
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Fig. 3: Major-minor Devices in Linux3

6.4 Transferring Data Within the Kernel

Both Linux and Windows support three ways of transferring data between user-level applications and kernel-level
drivers:

• Buffered Input-Output which uses buffers managed by the kernel. For write operations, the kernel copies data
from the user-space buffer into a kernel-allocated buffer and passes it to the device driver. Reads are the same,
with kernel copying data from a kernel buffer into the buffer provided by the application.

• Direct Input-Output which does not involve copying. Instead, the kernel pins a user-allocated buffer in a
physical memory so that it remains there without being swapped out while data is in progress.

• Memory Mapping can also be arranged by the kernel so that the kernel and user-space applications can access
the same pages of memory using distinct addresses.

Linux provides a number of functions like clear_user, copy_to_user, strncpy_from_user, and some
others to perform buffered data transfers between the kernel and user memory. These functions validate pointers to
data buffers and handle all details of the data transfer by safely copying the data buffer between memory regions.

However, drivers for block devices operate on entire data blocks of known size, which can be simply moved between
the kernel and user address spaces without copying them. This case is automatically handled by the Linux kernel for
all block device drivers. The block request queue takes care of transferring data blocks without excess copying, and
the Linux system call interface takes care of converting file system requests into block requests.

Finally, the device driver can allocate some memory pages from kernel address space (which is non-swappable) and
then use the remap_pfn_range function to map the pages directly into the address space of the user process. The
application can then obtain the virtual address of this buffer and use it to communicate with the device driver.

6.5 References
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CHAPTER

SEVEN

DMA/BRIDGE FOR PCIE DRIVERS OVERVIEW

7.1 The PCIe DMA Driver

The Xilinx PCI Express DMA IP provides high-performance direct memory access (DMA) via PCI Express. The
PCIe DMA can be implemented in Xilinx 7-series XT and UltraScale devices. Xilinx Support Answer 65444 provides
drivers and software that can be run on a PCI Express root port host PC to interact with the DMA endpoint IP via PCI
Express. The drivers and software provided with the answer recordare designed for Linux and Windows operating
systems and can be used for lab testing or as a reference for driver and software development. Through the use of
the PCIe DMA IP and the associated drivers and software you will be able to generate high-throughput PCIe memory
transactions between a host PC and a Xilinx FPGA.

7.2 Accessing and Building the Xilinx Driver

These steps are derived from Xilinx Support Answer 65444, with our suggestions added.

The current driver implementation uses the following Kernel functions and must be included in your OS kernel version.
The following Linux distributions have been tested:

• Red Hat (RHEL 7)

• Fedora

• CentOS

• Ubuntu

Navigate to Xilinx’s GitHub repo here and clone the repo from either the Linux CLI or by downloading the repo
directly from the GitHub website. A helpful website is DownGit, which will allow you to download the XDMA folder
without pulling the entire repository.

On your host computer, make a temporary directory using mkdir dma_driver and navigate to this directory. Copy
the downloaded zip file to the current directory with cp ../Downloads/linux-kernel.zip . (do not forget
the period), and unzip the driver zip file. Navigating into linux-kernel, we can open the README to find out
how to install the driver. Be aware that the Usage instructions are not exact and there are some additional steps required
in between.

During our testing, after attempting to run the Makefile by using sudo make install in the xdma folder, we
found a few errors while compiling. These errors may be fixed in the future, but as of the current XDMA driver
version of v2020.1.8, these may prevent you from properly creating the driver:

• Make sure you install the dependencies kernel-devel and elfutils-libelf-devel.
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Fig. 1: Possible Makefile error

• If you encounter this error (implicit declaration of function pci_cleanup_aer_uncorrect_error_status),
open xdma_mod.c in your editor of choice and replace pci_cleanup_aer_uncorrect_error_status(pdev)
for pci_aer_clear_nonfatal_status(pdev). Save the file.

• There are other errors present in libxdma.c and xmda_mod.c. These files can be updated from this pull
request here.

Once all errors have been fixed (there may be more or less depending on the version, check the Github repo), make the
driver with sudo make install and run sudo make in the tools folder. Load the driver by navigating to the
tests folder, making the tests executables (we opted to test load_driver with chmod +x 'load_driver.
sh') and running sudo ./load_driver.sh. Check that the driver is loaded into the kernel with lsmod.

Fig. 2: Checking the kernel modules

We can test the driver using the same process by running sudo ./run_test.sh. When we ran the test, we en-
countered an error on line 28. To fix this, open the run_test.sh file, and on line 28, change if [ $channelId
== "1fc" ]; then to if [ “$channelId” == "1fc" ]; then. From here, you will be able to connect
your physical PCIe device to the host machine and run each test to check that the host can identify the PCIe Endpoint.

Fig. 3: Error in run_test.sh
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CHAPTER

EIGHT

CREATING A USER-FRIENDLY DUT GUI

This section focuses on creating a messaging system between a Python GUI, a C++ server, and an example C++ DUT
replicating the functionality of our FPGA AXI counter in software instead.

8.1 What is a GUI?

A graphical user interface (GUI) allows a user to interact with a computer program using a mouse cursor or other
pointing devices only. A GUI allows a user to interact with programs without prerequisite knowledge of the underlying
system architecture. This is very useful for simplying functions for use by a general audience.

A GUI program is very different from a program that uses a command line interface which receives user input from
typed characters on a keyboard. Typically programs that use a command line interface perform a series of tasks in a
predetermined order and then terminate, utilizing the Windows or Linux terminal and relying on the user’s knowledge
of standard Unix syntax. In contrast, a GUI program creates the icons that are displayed to a user and must wait for
the user to interact with them. The order that tasks are performed by the program is under the user’s control – not the
program’s control! This means a GUI program must keep track of its own internal state and respond correctly to user
commands that are given in any order the user chooses. For example, after setting an initial value for a counter, the
GUI must keep track of any subsequent changes to this value if the user decides to increment or decrement the counter.

An GUI program has the following structure:

• Create the icons and widgets that are displayed to a user and organize them inside a screen window.

• Define functions that will process user and application events.

• Associate specific user events with specific functions.

• Start an infinite event-loop that processes user events. When a user event happens, the event-loop calls the
function associated with that event.

Usually, GUIs are created with higher-level programming languages like Java for their rich graphical libraries and ease
of use. As such, we will use Python and the simple graphical library Tkinter to create the GUI for our test program.
You can read more about GUIs and Tkinter here.
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8.2 System Overview

The purpose of this system was to build a framework that allowed for versatile communication between the end user
and FPGA DUT. Xilinx’s DMA/Bridge for PCIe driver arbitrates the mapping of physical memory to virtual memory.
This allows for the FPGA board to communicate with the host machine through PCIe by writing values from physical
kernel addresses into the PC’s virtual memory. This framework bridges the gap between the FPGA’s stored data in
virtual userspace and the user themselves. There are many ways to display the FPGA’s data to the user, but we chose to
utilize a TCP messaging library called ZeroMQ. By using TCP sockets, the user will be able to write and read to/from
virtual memory any amount of data, including PCIe TLPs, binary data, strings, etc.

However, one goal was to test this system without the presence of a board, as the software infrastructure should be
able to operate independently without a PCIe device. To accomplish this, we also created an example DUT in C++
mimicking our simple AXI counter to simulate data transactions within virtual memory.

Fig. 1: Software system BD
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8.3 Environment Setup

This setup has been tested on both Ubuntu/Debian-based distributions and CentOS/Red Hat. Steps may vary based on
the Linux distribution used. Windows and MacOS not tested, although the system should function properly with all
dependencies installed.

8.3.1 Dependencies

Important: The GUI folder can be downloaded here.

For this system to function properly, we need to install multiple dependencies. This includes Python, ZeroMQ, CMake,
and other libraries. Depending on your current environment, some steps may be skipped. Assume that all installation
commands need sudo permission.

1. Install CMake.

a) For Debian, run sudo apt-get install cmake g++ make. Run apt show cmake to
check if it has installed properly.

b) For CentOS, run sudo yum install cmake. For all subsequent CentOS commands, yum can
be substituted for the dnf package manager if it is already installed.

2. Install Libsodium.

a) For Debian, run apt-get install libsodium-dev. If this does not work, you may have to
install libsodium23 or libsodium18. Otherwise, download the stable tarball here, unzip it, run
sudo ./configure, sudo make, and sudo make install to install Libsodium manually.

b) For CentOS, run yum install libsodium. You should enable EPEL first (check this article).

c) For CentOS, if yum does not work, first run uname -m to check if the machine is x86_64
or aarch64. Download the latest release here (our host machine was x86_64), run rpm -Uvh
libsodium-1.0.18-1.el7.remi.src.rpm (this is the package filename), and then run
sudo yum install libsodium.

3. Download the rest of the necessary dependencies. For brevity, we will combine multiple packages together.

a) For Debian, run apt-get install libtool pkg-config build-essential
autoconf automake. Then run apt-get libzmq5 libzmq3-dev python3
python3-zmq python3-tk to install ZeroMQ, Python 3, and Tkinter (if they are not
already installed). You can also run pip install pyzmq but this is optional.

b) For CentOS, run yum install libtool pkg-config autoconf automake and then
yum install python3 python3-zmq python3-devel python3-tkinter if you do
not already have Python. Also run yum install gcc-c++ and yum install -y
ncurses-devel. Finally, run yum install zeromq-devel, which should install libsodium-
devel, libunwind-devel, openpgm-devel, and zeromq-devel.

Danger: The source file’s CMakeLists.txt is currently configured for Debian.

• For CentOS, libzmq.so is found in /usr/lib64 (different from Ubuntu), so after installing all de-
pendencies for CentOS, open CMakeLists.txt and edit the line that finds the libzmq.so file to
FIND_FILE(ZMQLIB libzmq.so /usr/lib64).
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• The location of libzmq.so will vary, so be sure to use the find command in the Terminal (find /usr
-name libzmq.so).

8.3.2 Running the Program

1. Download and install all dependencies.

2. Download and decompress gui.zip into a folder.

3. Within the folder itself, make another temporary folder (this is where your C++ executable will go).

4. Navigate to this temporary folder using the terminal.

5. Compile main.cpp using the command cmake ..

a) If using CentOS, go into another folder on top (like CMakeFiles), and copy zmq.hpp into the same
folder as CMakeCache.txt and cmake_install.cmake.

b) After running cmake .., run cmake --build .. in the aforementioned top folder (in this case,
CMakeFiles) and ./ZmqProject will be generated in the previous folder (if there is trouble compil-
ing, read this post).

c) If you do not do this, you may get an error about not compiling due to having no cache.

6. Run the C++ server using ./ZmqProject.

7. In a separate terminal window, run the python script using python3 client_tk.py.

8. You should now see a simple blue GUI pop up.

a) Type an initial value into the textbox and click Start. You should see the value be set in the C++ server
terminal and a reply back to the python client.

b) You can click the ++ button to increment the counter by 10, – to decrement the counter by 10, or Stop to
close out of the program. With each command, both the server and client should respond to each other (for
example, the command “increment” should be sent to the server and the client should receive a reply back
that “The counter is at <num>”.
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Fig. 2: Example counter using Python, C++, and ZeroMQ
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CHAPTER

NINE

MIG 7 SERIES IP OVERVIEW

The MIG 7 Series IP is a ubiquitous core that is compatible with all 7 Series FPGAs, adding easy memory management
into any design. For this article, we will discuss using the MIG with both a Kintex-7 and Virtex-7 board, such as the
KC705 and VC707 respectively.

9.1 Customizing the IP

If using a board, be sure to select it as the project’s default part before moving on. A good board to start with is the
VC707, as it has ample computational power, DDR3 memory, and a PCIe interface, as well as other peripherals.

Create a new block diagram (BD) and use the IP catalog to add a new IP to the BD - in this case, the “Memory
Interface Generator (MIG 7 Series)” core. If using a board, a prepackaged MIG may be available. We can customize
it by double clicking it.
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Important: Unless mentioned otherwise, leave all values default.

• Make sure the AXI4 interface is enabled and select DDR3 SDRAM.

• The desired clock period must be between 2500 and 3300ps. For now, use 2500ps (400 MHz), as this is the
speed of the actual physical DDR3 RAM transactions.

• Make sure the PHY to Controller Clock Ratio is 4:1 (ensuring that the physical DDR RAM will operate at 400
MHz, but the controller stays at 100 MHz i.e., ui_clk = 100 MHz).

• For Kintex-7, select 8 bits as the Data Width for each address in memory. Also check that the number of Bank
Machines used for managing DDR banks is set to 4. For Virtex-7, set the Data Width to 64 bits to account for
the larger data bandwidth.

• At the bottom of the Controller 0 screen, make sure the memory details match 1 GB, x8, row:14,
col:10, bank:3, data bits per strobe:8, with data mask, single rank, 1.5V

• The AXI Address Width is equal to the bank + row + column width = 3 + 14 + 10 = 27 bits wide.

• Leave the AXI ID Width at 4, as we will not use this.

• Select the Input Clock Period for PLL input clock (CLKIN) at 5000ps for 200 MHz, so that we can use the input
clock as the reference clock, which must be 200 MHz. Deselect any additional clocks.

• Make sure the Memory Address Mapping Selection is set to the default configuration of Bank/Row/Column.

• Use No Buffer for the System Clock and Use System Clock for the Reference Clock, allowing us to use the
system clock to also drive the reference clock at 200 MHz.

• Choose active HIGH for the System Reset Polarity.

• Import and validate the Pin Configuration file. Boards will come with preset constraints. For example, the
VC707’s pins are as such:

• After specifying the pinout, leave all system signals to their default values on the final page.

• Accept the T&C, generate, and save.
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9.2 Simulating the Example Design

Right click the IP core under the Sources menu and click Open IP Example Design, which will create a new example
Vivado project, connecting the generated MIG to a Traffic Generator IP using AXI4.

After running synthesis and implementation, your schematic should look similar to this:

Looking at the 7 Series MIG documentation (UG586), we can see an abstracted BD of the example MIG design.

The example design uses a traffic generator to simulate the host PC reading/writing data from/to the MIG core. While
useful, Xilinx’s implementation is slightly obfuscated, so we will replace it with our own VIP traffic generator moving
forward.

The MIG’s reset scheme is as follows:

1. Raise the sys_rst port HIGH, since we defined it as active HIGH.

2. By doing this, the ui_sync_rst port also goes HIGH.

3. This port is passed into an inverter (the LUT1 in the schematic).

4. A LOW signal is sent from aresetn_reg (also known as aresetn), which resets all AXI components
(including both the traffic generator and MIG).

We can observe this behavior by running a Behavioral Simulation in Vivado. Make sure to add the correct AXI signals
by clicking the Scope heading, right clicking on the u_ip_top module and selecting Add to Wave Window. This will
allow us to see the AXI read and write transactions.
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Note: If you need a refresher on the AXI protocol or interpreting the simulation’s waveforms, check here.

Since the MIG needs time to calibrate and set up, no AXI reads/writes will occur until after the
init_calib_complete pin goes HIGH after 100us.

After running the MIG’s Behavioral Simulation, you should observe that the AXI Address Width is 27 bits and the
AXI Data Width is 32 bits, whfich is expected.

Tip: To find AXI parameter values such as Address or Data Width and Base Address, look for the comment AXI4
Shim parameters in the u_mig_7series_4_mig module.

9.3 Simulating Read/Writes with AXI VIP

Note: All further examples are implemented using a Kintex-7 FPGA. However, the most pertinent portions apply to
all other FPGAs (e.g., the VIP implementation can also be used in the VC707’s provided testbench).

As mentioned before, Xilinx’s implementation of their Traffic Generator is difficult to break down into understandable
chunks. Luckily, Xilinx also provides an alternative — the AXI Verification IP (or AXI VIP), which can simulate
an AXI master, slave, or pass-through device. You can find more information about this IP through its product guide
(PG267), but for our purposes, we will instead manually instantiate the IP using the example design.

Open the example_top module and comment out the entire traffic generator instantiation. It will have a comment
above it stating The traffic generation module instantiated below drives traffic (patterns) on the application interface
of the memory controller.
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Make sure to also disable all the traffic generator-related source files: mig_7series_v4_2_axi4_tg.
v, mig_7series_v4_2_axi4_wrapper.v, mig_7series_v4_2cmd_prbs_gen_axi.v,
mig_7series_v4_2_data_gen_chk.v, and mig_7series_v4_2_tg.v. In the abstracted block
diagram (BD) above, we are essentially replacing the entire axi4_tg module.

Using the IP Catalog, customize the AXI VIP as such:

60 Chapter 9. MIG 7 Series IP Overview



fpgaemu, Release 0.1

Open the top module of the AXI VIP (axi_vip_0), copy all input/output signals (listed underneath module
axi_vip_0), and paste these signals back into the example_top.v file in place of the commented-out TG instantia-
tion.

Important: If you want to download the top file instead, go here. Just be sure to rename example_top_axi.v
to example_top.v!

//***************************************************************************
// The traffic generation module instantiated below drives traffic (patterns)
// on the application interface of the memory controller
//***************************************************************************

always @(posedge clk) begin
aresetn <= ~rst;
end

//INSTANTIATE AXI VIP INSTEAD OF TRAFFIC GENERATOR

axi_vip_0 u_axi_vip_0 (
.aclk(clk),
.aresetn(aresetn),
.m_axi_awid(s_axi_awid),
.m_axi_awaddr(s_axi_awaddr),
.m_axi_awlen(s_axi_awlen),
.m_axi_awsize(s_axi_awsize),
.m_axi_awburst(s_axi_awburst),
.m_axi_awlock(s_axi_awlock),
.m_axi_awcache(s_axi_awcache),

(continues on next page)
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(continued from previous page)

.m_axi_awprot(s_axi_awprot),

.m_axi_awvalid(s_axi_awvalid),

.m_axi_awready(s_axi_awready),

.m_axi_wdata(s_axi_wdata),

.m_axi_wstrb(s_axi_wstrb),

.m_axi_wlast(s_axi_wlast),

.m_axi_wvalid(s_axi_wvalid),

.m_axi_wready(s_axi_wready),

.m_axi_bid(s_axi_bid),

.m_axi_bresp(s_axi_bresp),

.m_axi_bvalid(s_axi_bvalid),

.m_axi_bready(s_axi_bready),

.m_axi_arid(s_axi_arid),

.m_axi_araddr(s_axi_araddr),

.m_axi_arlen(s_axi_arlen),

.m_axi_arsize(s_axi_arsize),

.m_axi_arburst(s_axi_arburst),

.m_axi_arlock(s_axi_arlock),

.m_axi_arcache(s_axi_arcache),

.m_axi_arprot(s_axi_arprot),

.m_axi_arvalid(s_axi_arvalid),

.m_axi_arready(s_axi_arready),

.m_axi_rid(s_axi_rid),

.m_axi_rdata(s_axi_rdata),

.m_axi_rresp(s_axi_rresp),

.m_axi_rlast(s_axi_rlast),

.m_axi_rvalid(s_axi_rvalid),

.m_axi_rready(s_axi_rready)
);

// COMMENT THIS PART OUT BELOW
mig_7series_v4_2_axi4_tg #(

If synthesis completes, the AXI VIP has been successfully instantiated into the design in place of the traffic generator.
The file hierarchy should be like this:

We can now add our AXI VIP testbench into the simulation top file sim_tb_top. We will use SystemVerilog
to implement this testbench, so right click on the file, select Set File Type, and change the simulation language to
SystemVerilog.

The objective of this testbench is to write some data to the DDR memory and read back from the addresses we specified
to compare the data. To achieve this, first initialize the AXI VIP in sim_tb_top like so:

import axi_vip_pkg::*; //import packages for the AXI VIP
import axi_vip_0_pkg::*;

module sim_tb_top;

//declare AXI agent as master
axi_vip_0_mst_t agent;

//define parameters for AXI VIP
axi_transaction wr_trans1, wr_trans2; //two AXI write transactions
axi_transaction rd_trans1, rd_trans2; //two AXI read transactions
xil_axi_uint id =0; //default
xil_axi_ulong addr1 =32'h0000, addr2 = 32'h0004; //define two test
→˓addresses

(continues on next page)
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xil_axi_len_t len =0; //only one burst
xil_axi_size_t size =xil_axi_size_t'(xil_clog2((32)/8)); //default,
→˓maximum of 4 words per transaction (4 bytes for 32 bit AXI bus)
xil_axi_burst_t burst =XIL_AXI_BURST_TYPE_INCR; //default,incremental
→˓burst type
xil_axi_lock_t lock = XIL_AXI_ALOCK_NOLOCK; //default
xil_axi_cache_t cache =3; //default
xil_axi_prot_t prot =0; //default
xil_axi_region_t region =0; //default
xil_axi_qos_t qos =0; //default
xil_axi_data_beat [255:0] wuser =0; //default
xil_axi_data_beat awuser =0; //default
bit [7:0] dataw1 = 8'hC0, dataw2 = 8'hAF; //define two data words
→˓for AXI writes
bit[7:0] datar1, datar2; //if successful, these should match dataw1
→˓and dataw2

Then, we perform two writes into DDR, one to address 0x0000 of data 0xC0 and the other to address 0x0004 of data
0xAF, and two reads from the same addresses, through:

//***************************************************************************
// Reporting the test case status
// Status reporting logic exists both in simulation test bench (sim_tb_top)
// and sim.do file for ModelSim. Any update in simulation run time or time out
// in this file need to be updated in sim.do file as well.
//***************************************************************************
initial
begin : Logging

fork
begin : calibration_done

wait (init_calib_complete); //wait until init_calib_complete is done
$display("Calibration Done");

#100000; //100 ns delay

agent = new("master vip agent",u_ip_top.u_axi_vip_0.inst.IF); //pass correct
→˓IF path

agent.start_master(); //start master agent

//begin write transactions to address 1 and address 2
wr_trans1 = agent.wr_driver.create_transaction("single_write"); //initialize

→˓first transaction
wr_trans1.set_write_cmd(addr1,burst,id,len,size); //declare address 1, as

→˓well as burst length and size
wr_trans1.set_prot(prot); //set all other default parameters
wr_trans1.set_lock(lock);
wr_trans1.set_cache(cache);
wr_trans1.set_region(region);
wr_trans1.set_qos(qos);
wr_trans1.set_data_block(dataw1); //put data1 on the AXI data bus
agent.wr_driver.send(wr_trans1); //send write transaction

#100000; //100 ns delay

wr_trans2 = agent.wr_driver.create_transaction("single_write"); //initialize
→˓second transaction

(continues on next page)
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wr_trans2.set_write_cmd(addr2,burst,id,len,size); //declare address 2, as
→˓well as burst length and size

wr_trans2.set_prot(prot); //set all other default parameters
wr_trans2.set_lock(lock);
wr_trans2.set_cache(cache);
wr_trans2.set_region(region);
wr_trans2.set_qos(qos);
wr_trans2.set_data_block(dataw2); //put data2 on the AXI data bus
agent.wr_driver.send(wr_trans2); //send write transaction

#100000; //100 ns delay

//begin read transaction to address 1 and address 2
rd_trans1 = agent.rd_driver.create_transaction("single_read"); //initialize

→˓read transaction
rd_trans1.set_read_cmd(addr1,burst,id,len,size); //set the correct parameters
rd_trans1.set_prot(prot);
rd_trans1.set_lock(lock);
rd_trans1.set_cache(cache);
rd_trans1.set_region(region);
rd_trans1.set_qos(qos);
rd_trans1.set_driver_return_item_policy(XIL_AXI_PAYLOAD_RETURN); //default,

→˓set driver return policy
agent.rd_driver.send(rd_trans1); //send read transaction
agent.rd_driver.wait_rsp(rd_trans1); //wait for response signal
datar1 = rd_trans1.get_data_block(); //obtain read data

#100000; //100 ns delay

rd_trans2 = agent.rd_driver.create_transaction("single_read"); //initialize
→˓read transaction

rd_trans2.set_read_cmd(addr2,burst,id,len,size); //set correct parameters
rd_trans2.set_prot(prot);
rd_trans2.set_lock(lock);
rd_trans2.set_cache(cache);
rd_trans2.set_region(region);
rd_trans2.set_qos(qos);
rd_trans2.set_driver_return_item_policy(XIL_AXI_PAYLOAD_RETURN); //default,

→˓set driver return policy
agent.rd_driver.send(rd_trans2); //send read transaction
agent.rd_driver.wait_rsp(rd_trans2); //wait for response signal
datar2 = rd_trans2.get_data_block(); //obtain read data

#100000; //100 ns delay
if (datar1 == dataw1 && datar2 == dataw2) begin //test successful if this

→˓condition is true
$display("TEST PASSED");

end
else begin

$display("TEST FAILED: DATA ERROR");
end
disable calib_not_done;
$finish;

end

We can now run our Behavioral Simulation, but make sure to add the AXI signals by opening the Scope menu, right
clicking on the ui_top file, and selecting Add to Wave Window.
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During the simulation, init_calib_complete will go HIGH after about 100us, after which the reads and writes
will begin. sys_resetwill be held HIGH for the first 200ns, causing the other resets to initiate and begin calibration.
Here is what a successful simulation will look like:

As we can see, the two bytes that were read from memory (c0 and af from datar1 and datar2, respectively)
matched the two bytes that were initially written to those memory addresses (dataw1 and dataw2). If your simulation
matches this, good job! The simulation was a success.

9.4 Connecting the MIG to a Custom Design

Perhaps you wish to connect the generated MIG to any AXI master, not just the AXI VIP. Using the VIP as another
example, using the IP Integrator (making a BD) makes this process very straightforward.

• The ui_clk must be driving the AXI read/write transactions to the MIG (i.e., the aclk on the AXI VIP).

• The ui_clk_sync_rst must be driving the aresetn pin on the AXI master (since ui_clk_sync_rst
is active HIGH and aresetn is active LOW, we use a Processor System Reset IP for easy conversion)

• The sys_clk_i is the 200 MHz input clock that we defined in our MIG customization (which is also tied to
the reference clock).

• sys_rst is the active HIGH reset that we defined in our MIG customization; bringing this pin HIGH will
trigger the ui_clk_sync_rst, which will in turn trigger the aresetn pin on the AXI master.

• init_calib_complete tells us when the MIG calibration is complete, so that we can being using the DDR
memory (will take about 100us to go HIGH in simulation).

• Finally, the external DDR bus connects to the physical RAM on the emulation board (bus outputs need to be
assigned correctly using a XDC constraints file).
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9.5 Connecting the MIG to Two AXI Master VIPs using AXI SmartCon-
nect

After connecting one AXI VIP to the MIG, naturally we should also test dual reads/writes from two AXI masters
simultaneously by connecting two AXI VIPs to a singular MIG. Later, we will use this principle to replace the AXI
masters with a PCIe core and a DUT, moving closer to a full emulation environment. To achieve this, we will use an
AXI SmartConnect IP.

Error: Xilinx now recommends that all new AXI designs use the SmartConnect v1.0 core. It is not recommended
to use the AXI Interconnect v2.1 core.

Note: You can read more about the SmartConnect IP here.

Beginning with our modified MIG example design with one AXI VIP, create a new block diagram (BD). Add a
SmartConnect IP and customize it as shown:

Fig. 1: SmartConnect customization

Add two Master AXI VIP IPs to the BD and customize them:

Connect them together in the BD (make aclk, aresetn, and M00_AXI external to instanitate them later):

If you try to Validate the BD now, a warning message about an unmapped slave will appear. To fix this, go to the
Address Editor tab and right click on the two AXI Master VIPs to map the M00_AXI_0 port to Offset Address
0x0000_0000 for both AXI VIPs.

Make sure your design fully validates by right clicking the BD and selecting Validate Design.

Right click your BD in the Sources directory and Create a HDL Wrapper, which will generate the RTL needed to
instantiate our BD. When it is done generating, open the top file (default name is similar to design_1_wrapper)
and copy all inputs/outputs in the module.
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Fig. 2: MIG AXI VIP customization
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Fig. 3: AXI VIP Block Diagram

Fig. 4: MIG AXI Address Editor
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Moving back to our MIG example_top file, remove the previous example instantiation of the AXI VIP and insert
the new instantiation with the ports from design_1_wrapper. It will look like this:

//***************************************************************************
// The traffic generation module instantiated below drives traffic (patterns)
// on the application interface of the memory controller
//***************************************************************************

always @(posedge clk) begin
aresetn <= ~rst;
end

//INSTANTIATE Block Diagram with 2 AXI VIPs and an AXI Interconenct

design_1_wrapper u_axi_vip_interconnect_bd (

//.M00_AXI_arid(s_axi_arid), //no port on AXI Smartconnect
.M00_AXI_0_araddr(s_axi_araddr),
.M00_AXI_0_arburst(s_axi_arburst),
.M00_AXI_0_arcache(s_axi_arcache),
.M00_AXI_0_arlen(s_axi_arlen),
.M00_AXI_0_arlock(s_axi_arlock),
.M00_AXI_0_arprot(s_axi_arprot),
//.M00_AXI_0_arqos(s_axi_arqos), //no port on AXI Smartconnect
.M00_AXI_0_arready(s_axi_arready),
.M00_AXI_0_arsize(s_axi_arsize),
.M00_AXI_0_arvalid(s_axi_arvalid),
//.M00_AXI_awid(s_axi_awid), //no port on AXI Smartconnect
.M00_AXI_0_awaddr(s_axi_awaddr),
.M00_AXI_0_awburst(s_axi_awburst),
.M00_AXI_0_awcache(s_axi_awcache),
.M00_AXI_0_awlen(s_axi_awlen),
.M00_AXI_0_awlock(s_axi_awlock),
.M00_AXI_0_awprot(s_axi_awprot),
//.M00_AXI_0_awqos(s_axi_awqos), //no port on AXI Smartconnect
.M00_AXI_0_awready(s_axi_awready),
.M00_AXI_0_awsize(s_axi_awsize),
.M00_AXI_0_awvalid(s_axi_awvalid),
//.M00_AXI_0_bid(s_axi_bid), //no port on AXI Smartconnect
.M00_AXI_0_bready(s_axi_bready),
.M00_AXI_0_bresp(s_axi_bresp),
.M00_AXI_0_bvalid(s_axi_bvalid),
.M00_AXI_0_rdata(s_axi_rdata),
//.M00_AXI_0_rid(s_axi_rid), //no port on AXI Smartconnect
.M00_AXI_0_rlast(s_axi_rlast),
.M00_AXI_0_rready(s_axi_rready),
.M00_AXI_0_rresp(s_axi_rresp),
.M00_AXI_0_rvalid(s_axi_rvalid),
.M00_AXI_0_wdata(s_axi_wdata),
.M00_AXI_0_wlast(s_axi_wlast),
.M00_AXI_0_wready(s_axi_wready),
.M00_AXI_0_wstrb(s_axi_wstrb),
.M00_AXI_0_wvalid(s_axi_wvalid),
.aclk_0(clk),
.aresetn_0(aresetn)

);

// COMMENT OUT THIS PART BELOW
mig_7series_v4_2_axi4_tg #(
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Now we can run synthesis to verify that the top file compiles. There may be a small syntax error, which we can ignore.

Now that we have successfully instantiated our new design, our two AXI Masters should be able to perform read/write
requests to the MIG through the AXI SmartConnect IP. We can verify this through a behavioral simulation that per-
forms two simultaneous write/read requests to two different addresses.

Important: The simulation top file can be found here. Just be sure to rename example_top_2axi.v to
example_top.v!

Note: This testbench will only work if you named your BD instantiation as u_axi_vip_interconnect_bd and
left the component names of the AXI VIPs as default.

As before, make sure to instantiate the two AXI VIPs and their ports within the example testbench:

import axi_vip_pkg::*; //import packages for the AXI VIP
import design_1_axi_vip_0_0_pkg::*;
import design_1_axi_vip_0_1_pkg::*;

module sim_tb_top;

//declare AXI agent as master
design_1_axi_vip_0_0_mst_t agent0;
design_1_axi_vip_0_1_mst_t agent1;

//define parameters for AXI VIP
axi_transaction wr_trans1, wr_trans2; //two AXI write transactions
axi_transaction rd_trans1, rd_trans2; //two AXI read transactions
xil_axi_uint id =0; //default
xil_axi_ulong addr1 =32'h0000, addr2 = 32'h0004; //define two test
→˓addresses
xil_axi_len_t len =0; //only one burst
xil_axi_size_t size =xil_axi_size_t'(xil_clog2((32)/8)); //default,
→˓maximum of 4 words per transaction (4 bytes for 32 bit AXI bus)
xil_axi_burst_t burst =XIL_AXI_BURST_TYPE_INCR; //default,incremental
→˓burst type
xil_axi_lock_t lock = XIL_AXI_ALOCK_NOLOCK; //default
xil_axi_cache_t cache =3; //default
xil_axi_prot_t prot =0; //default
xil_axi_region_t region =0; //default
xil_axi_qos_t qos =0; //default
xil_axi_data_beat [255:0] wuser =0; //default
xil_axi_data_beat awuser =0; //default
bit [7:0] dataw1 = 8'hC0, dataw2 = 8'hAF; //define two data words
→˓for AXI writes
bit[7:0] datar1, datar2; //if successful, these should match dataw1
→˓and dataw2

Then we set up two write and read requests using both AXI VIPs to two specified addresses, using the same procedure
as our last testbench with one AXI VIP.

//***************************************************************************
// Reporting the test case status
// Status reporting logic exists both in simulation test bench (sim_tb_top)
// and sim.do file for ModelSim. Any update in simulation run time or time out
// in this file need to be updated in sim.do file as well.

(continues on next page)
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//***************************************************************************
initial
begin : Logging

fork
begin : calibration_done

wait (init_calib_complete); //wait until init_calib_complete is done
$display("Calibration Done");

#100000; //100 ns delay

agent0 = new("master vip agent",u_ip_top.u_axi_vip_interconnect_bd.design_1_
→˓i.axi_vip_0.inst.IF); //pass correct IF path

agent0.start_master(); //start master agent
agent1 = new("master vip agent",u_ip_top.u_axi_vip_interconnect_bd.design_1_

→˓i.axi_vip_1.inst.IF); //pass correct IF path
agent1.start_master(); //start master agent

//write using AXI VIP 1
wr_trans1 = agent1.wr_driver.create_transaction("single_write"); //

→˓initialize first transaction
wr_trans1.set_write_cmd(addr1,burst,id,len,size); //declare address 1, as

→˓well as burst length and size
wr_trans1.set_prot(prot); //set all other default parameters
wr_trans1.set_lock(lock);
wr_trans1.set_cache(cache);
wr_trans1.set_region(region);
wr_trans1.set_qos(qos);
wr_trans1.set_data_block(dataw1); //put data1 on the AXI data bus
agent1.wr_driver.send(wr_trans1); //send write transaction

//write using AXI VIP 0
wr_trans2 = agent0.wr_driver.create_transaction("single_write"); //

→˓initialize second transaction
wr_trans2.set_write_cmd(addr2,burst,id,len,size); //declare address 2, as

→˓well as burst length and size
wr_trans2.set_prot(prot); //set all other default parameters
wr_trans2.set_lock(lock);
wr_trans2.set_cache(cache);
wr_trans2.set_region(region);
wr_trans2.set_qos(qos);
wr_trans2.set_data_block(dataw2); //put data2 on the AXI data bus
agent0.wr_driver.send(wr_trans2); //send write transaction

#100000; //100 ns delay

//read using AXI VIP 0
rd_trans1 = agent0.rd_driver.create_transaction("single_read"); //initialize

→˓read transaction
rd_trans1.set_read_cmd(addr1,burst,id,len,size); //set the correct parameters
rd_trans1.set_prot(prot);
rd_trans1.set_lock(lock);
rd_trans1.set_cache(cache);
rd_trans1.set_region(region);
rd_trans1.set_qos(qos);
rd_trans1.set_driver_return_item_policy(XIL_AXI_PAYLOAD_RETURN); //default,

→˓set driver return policy
(continues on next page)
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agent0.rd_driver.send(rd_trans1); //send read transaction
agent0.rd_driver.wait_rsp(rd_trans1); //wait for response signal
datar1 = rd_trans1.get_data_block(); //obtain read data

//read using AXI VIP 1
rd_trans2 = agent1.rd_driver.create_transaction("single_read"); //initialize

→˓read transaction
rd_trans2.set_read_cmd(addr2,burst,id,len,size); //set correct parameters
rd_trans2.set_prot(prot);
rd_trans2.set_lock(lock);
rd_trans2.set_cache(cache);
rd_trans2.set_region(region);
rd_trans2.set_qos(qos);
rd_trans2.set_driver_return_item_policy(XIL_AXI_PAYLOAD_RETURN); //default,

→˓set driver return policy
agent1.rd_driver.send(rd_trans2); //send read transaction
agent1.rd_driver.wait_rsp(rd_trans2); //wait for response signal
datar2 = rd_trans2.get_data_block(); //obtain read data

#1000000; //1000 ns delay

if (datar1 == dataw1 && datar2==dataw2) begin //test successful if this
→˓condition is true

$display("TEST PASSED");
end
else begin

$display("TEST FAILED: DATA ERROR");
end
disable calib_not_done;
$finish;

end

We can observe the simulation’s intended behavior by running a Behavioral Simulation.

Here we can see two AXI Write transactions — one writing data C0 to address 0x0000 and one writing data AF to
address 0x0004.
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We can also observe two AXI Read transactions, one from address 0x0000 reading data C0 and one from address
0x0004 reading data AF.

If the TCL console prints a Test Passed message, congratulations! The test worked and you have successfully imple-
mented two AXI VIPs with a MIG.

sim_tb_top.mem_rnk[0].gen_mem[0].u_comp_ddr3.data_task: at time 107027064.0 ps INFO:
→˓READ @ DQS= bank = 0 row = 0000 col = 00000006 data = 00
sim_tb_top.mem_rnk[0].gen_mem[0].u_comp_ddr3.data_task: at time 107028314.0 ps INFO:
→˓READ @ DQS= bank = 0 row = 0000 col = 00000007 data = 00
sim_tb_top.mem_rnk[0].gen_mem[0].u_comp_ddr3.cmd_task: at time 107048314.0 ps INFO:
→˓Precharge bank 0

TEST PASSED
Executing Axi4 End of Simulation checks
Executing Axi4 End of Simulation checks
$finish called at time : 108227500 ps : File "..."
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TEN

AXI MM TO PCIE IP OVERVIEW

The AXI Memory Mapped to PCI Express IP is a useful core that is compatible with only some FPGAs, offering a
different implementation than that offered by the 7 Series Integrated Block for PCIe IP. More information can be found
in the IP’s documentation (PG055).

10.1 Customizing the IP

Create a new block diagram (BD) and use the IP catalog to add a new IP to the BD - in this case, the “AXI Memory
Mapped to PCIe” core. We can customize it by double clicking it.

Important: Unless mentioned otherwise, leave all values default.

• In the PCIE:Basics tab, set the Reference Clock frequency to 100 MHz.

• Make sure we are customizing the device as an Endpoint.

• Depending on the application, in the PCIE: Link Config tab, change the Land Width. Most boards support
at least X4, although newer boards will support X8. In addition, select the highest possible Link Speed for
maximum performance.

• Again, depending on the application, you may change the Vendor ID and Class Code to something else. For
example, if you plan to use this IP in conjunction with a soft CPU like MicroBlaze, you will change the Class
Code to 0x060400 accordingly. If not, leave the entire tab default.

• In the PCIE:BARs tab, set BAR 0 at a size of 64 kB at offset address 0x00000000 and BAR 1 at size 64 kB at
address 0x40000000.

• Every other tab can be left default.

10.2 Simulating the Example Design

After customizing, right click the IP block and open the IP Example Design.

The Example Design consists of the AXI MM to PCIe IP block connected to both a Block RAM (BRAM) Controller
through the PCIe’s AXI Master port and a Root Complex simulation on the PCIe’s physical serial ports. Essentially,
the example design simulates a host PC generating and sending traffic into the FPGA through the PCIe interface. The
AXI MM to PCIe IP processes the incoming traffic and writes into BRAM using the AXI protocol.

Note: If you need a refresher on the PCIe protocol, check here.
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Fig. 1: Abstracted PCIe Example Design BD

Like the MIG design, the PCIe example design must first spend 175 us calibrating and initializing its serial ports. It
then performs a simple write to address 0x10 in BRAM and subsequently reads it back, verifying that the read data
matches what was written.

The PCIe serial ports take much longer to initialize than the MIG’s. If you run a Behavioral Simulation, do not be
surprised if nothing happens at first. The simulation may stall after returning the message Built simulation snapshot
board_behav. Since, by default, the simulation only runs for less than 1 us, simply use the command run -all in
the TCL console to allow the serial lines to start toggling and the simulation to fully complete.

After around 30 minutes to 1 hour, you should receive a message in the console stating that the testbench has timed
out. If the simulation is successful, the TCL console will also show that the test passed.

Note: The simulation will only work for one registered BAR in the IP. If you customized your IP to have multiple
BARs, like we did, you will receive a message that the second BAR was disabled for this simulation.

[ 207869316] : TSK_PARSE_FRAME on Receive
[ 209749220] : Transmitting TLPs to Memory 32 Space BAR 0
[ 209767229] : TSK_PARSE_FRAME on Transmit
[ 209805308] : TSK_PARSE_FRAME on Transmit
[ 212125269] : TSK_PARSE_FRAME on Receive
[ 213797220] : Test PASSED --- Write Data: 01020304 successfully received
[ 213837220] : Finished transmission of PCI-Express TLPs
Test Completed Successfully
$finish called at time 213837220 ps : File "..."
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10.3 Example IP Block Diagram

After running Block and Connection Automation, the AXI MM to PCIe IP example BD will look similar to this:

Fig. 2: PCIe Block Diagram

• The PCIe Reference Clock (REFCLK) at 100 MHz will go through an IBUFDSGTE Utility Buffer.

• The physical PERST (PCIe reset) pin is connected to a Processor System Reset IP, with the output going into
the axi_aresetn port.

• The INTX_MSI_Request port is connected to a Constant block tied active LOW (0) to prevent unwanted
MSI interrupts.

• The M_AXI port feeds into an AXI SmartConnect, where our AXI Slave devices are connected. The other AXI
slave at this moment is a basic AXI Verification IP (VIP).

• The S_AXI_CTL port can be used as an AXI Slave port to perform reads and writes to the PCIe Configuration
Space.

• The axi_aclk_out port outputs a clock frequency of 125 MHz, which is the frequency that the AXI MM to
PCIe Core operates at. It is currently clocking the SmartConnect and AXI VIP, which is typically not recom-
mended (should use a Clocking Wizard for all other peripherals).

• The pcie_7x_mgt ports are all external ports that connect to the physical PCIe port. They control the serial
transactions between the root complex and PCIe endpoint.

To ensure that our customized BARs are accurately reflected in our AXI Slave devices, we must assign the correct
addresses using the Address Editor. Map the S_AXI_CTL slave to address 0x00000000 and the AXI VIP slave to
address 0x40000000.
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10.4 Replacing the BRAM with DDR MIG in Example Design

Create
a
new
BD
and
in-
sert
an
AXI
Smart-
Con-
nect
with
one
AXI Master input, one AXI Slave output, 64-bit Data Width, and two clock inputs. This SmartConnect will resolve
the different clock domains that the PCIe IP and MIG run at.

Once the SmartConnect wrapper has been added to the project, open the IP catalog, and select the MIG 7 Series IP,
customizing it like this.

After the MIG has been generated, we will instanitate the MIG and SmartConnect into the example design top file.
Open xilinx_axi_pcie_ep.v and remove the instantiation of the BRAM Controller, replacing it with instantia-
tions of both the MIG and SmartConnect.

Important: If you want to download the top file instead, go here.

//INSTANTIATE MIG CORE
mig_7series_5 u_mig_7series_5(

// Memory interface ports
.ddr3_addr (ddr3_addr),
.ddr3_ba (ddr3_ba),
.ddr3_cas_n (ddr3_cas_n),
.ddr3_ck_n (ddr3_ck_n),
.ddr3_ck_p (ddr3_ck_p),
.ddr3_cke (ddr3_cke),
.ddr3_ras_n (ddr3_ras_n),
.ddr3_we_n (ddr3_we_n),

(continues on next page)
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.ddr3_dq (ddr3_dq),

.ddr3_dqs_n (ddr3_dqs_n),

.ddr3_dqs_p (ddr3_dqs_p),

.ddr3_reset_n (ddr3_reset_n),

.init_calib_complete (init_calib_complete),

.ddr3_cs_n (ddr3_cs_n),

.ddr3_dm (ddr3_dm),

.ddr3_odt (ddr3_odt),

// Application interface ports
.ui_clk (clk),
.ui_clk_sync_rst (rst),
.mmcm_locked (mmcm_locked),
.aresetn (aresetn),

.app_sr_req(app_sr_req),

.app_ref_req(app_ref_req), //HAD TO ADD THESE MANUALLY

.app_zq_req(app_zq_req),

.app_sr_active (app_sr_active),

.app_ref_ack (app_ref_ack),

.app_zq_ack (app_zq_ack),

// Slave Interface Write Address Ports
.s_axi_awid (s_axi_awid),
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awlen (s_axi_awlen),
.s_axi_awsize (s_axi_awsize),
.s_axi_awburst (s_axi_awburst),
.s_axi_awlock (s_axi_awlock),
.s_axi_awcache (s_axi_awcache),
.s_axi_awprot (s_axi_awprot),
.s_axi_awqos (4'h0),
.s_axi_awvalid (s_axi_awvalid),
.s_axi_awready (s_axi_awready),

// Slave Interface Write Data Ports
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wlast (s_axi_wlast),
.s_axi_wvalid (s_axi_wvalid),
.s_axi_wready (s_axi_wready),

// Slave Interface Write Response Ports
.s_axi_bid (s_axi_bid),
.s_axi_bresp (s_axi_bresp),
.s_axi_bvalid (s_axi_bvalid),
.s_axi_bready (s_axi_bready),

// Slave Interface Read Address Ports
.s_axi_arid (s_axi_arid),
.s_axi_araddr (s_axi_araddr),
.s_axi_arlen (s_axi_arlen),
.s_axi_arsize (s_axi_arsize),
.s_axi_arburst (s_axi_arburst),
.s_axi_arlock (s_axi_arlock),
.s_axi_arcache (s_axi_arcache),

(continues on next page)
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.s_axi_arprot (s_axi_arprot),

.s_axi_arqos (4'h0),

.s_axi_arvalid (s_axi_arvalid),

.s_axi_arready (s_axi_arready),

// Slave Interface Read Data Ports
.s_axi_rid (s_axi_rid),
.s_axi_rdata (s_axi_rdata),
.s_axi_rresp (s_axi_rresp),
.s_axi_rlast (s_axi_rlast),
.s_axi_rvalid (s_axi_rvalid),
.s_axi_rready (s_axi_rready),

// System Clock Ports
.sys_clk_i (sys_clk_i),
.device_temp (device_temp),

`ifdef SKIP_CALIB
.calib_tap_req (calib_tap_req),
.calib_tap_load (calib_tap_load),
.calib_tap_addr (calib_tap_addr),
.calib_tap_val (calib_tap_val),
.calib_tap_load_done (calib_tap_load_done),
`endif

.sys_rst (sys_rst)
);

assign s_axi_awid = 4'h0; //tie off unneeded ports to 0
assign s_axi_arid = 4'h0;
assign app_sr_req = 1'h0;
assign app_ref_req = 1'h0;
assign app_zq_req = 1'h0;

always @(posedge clk) begin
aresetn <= ~rst;

end

//INSTANTIATE AXI SMARTCONNECT MODULE
design_1_wrapper u_axi_smartconnect(

//Master ports going into MIG
.M00_AXI_0_araddr(s_axi_araddr),
.M00_AXI_0_arburst(s_axi_arburst),
.M00_AXI_0_arcache(s_axi_arcache),
.M00_AXI_0_arlen(s_axi_arlen),
.M00_AXI_0_arlock(s_axi_arlock),
.M00_AXI_0_arprot(s_axi_arprot),
//.M00_AXI_0_arqos(s_axi_arqos),
.M00_AXI_0_arready(s_axi_arready),
.M00_AXI_0_arsize(s_axi_arsize),
.M00_AXI_0_arvalid(s_axi_arvalid),
.M00_AXI_0_awaddr(s_axi_awaddr),
.M00_AXI_0_awburst(s_axi_awburst),
.M00_AXI_0_awcache(s_axi_awcache),
.M00_AXI_0_awlen(s_axi_awlen),
.M00_AXI_0_awlock(s_axi_awlock),

(continues on next page)
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.M00_AXI_0_awprot(s_axi_awprot),
//.M00_AXI_0_awqos(s_axi_awqos),
.M00_AXI_0_awready(s_axi_awready),
.M00_AXI_0_awsize(s_axi_awsize),
.M00_AXI_0_awvalid(s_axi_awvalid),
.M00_AXI_0_bready(s_axi_bready),
.M00_AXI_0_bresp(s_axi_bresp),
.M00_AXI_0_bvalid(s_axi_bvalid),
.M00_AXI_0_rdata(s_axi_rdata),
.M00_AXI_0_rlast(s_axi_rlast),
.M00_AXI_0_rready(s_axi_rready),
.M00_AXI_0_rresp(s_axi_rresp),
.M00_AXI_0_rvalid(s_axi_rvalid),
.M00_AXI_0_wdata(s_axi_wdata),
.M00_AXI_0_wlast(s_axi_wlast),
.M00_AXI_0_wready(s_axi_wready),
.M00_AXI_0_wstrb(s_axi_wstrb),
.M00_AXI_0_wvalid(s_axi_wvalid),

//Slave ports coming from the PCIE
.S00_AXI_0_araddr(m_axi_araddr),
.S00_AXI_0_arburst(m_axi_arburst),
.S00_AXI_0_arcache(m_axi_arcache),
.S00_AXI_0_arlen(m_axi_arlen),
.S00_AXI_0_arlock(m_axi_arlock),
.S00_AXI_0_arprot(m_axi_arprot),
//.S00_AXI_0_arqos(m_axi_arqos),
.S00_AXI_0_arready(m_axi_arready),
.S00_AXI_0_arsize(m_axi_arsize),
.S00_AXI_0_arvalid(m_axi_arvalid),
.S00_AXI_0_awaddr(m_axi_awaddr),
.S00_AXI_0_awburst(m_axi_awburst),
.S00_AXI_0_awcache(m_axi_awcache),
.S00_AXI_0_awlen(m_axi_awlen),
.S00_AXI_0_awlock(m_axi_awlock),
.S00_AXI_0_awprot(m_axi_awprot),
//.S00_AXI_0_awqos(m_axi_awqos),
.S00_AXI_0_awready(m_axi_awready),
.S00_AXI_0_awsize(m_axi_awsize),
.S00_AXI_0_awvalid(m_axi_awvalid),
.S00_AXI_0_bready(m_axi_bready),
.S00_AXI_0_bresp(m_axi_bresp),
.S00_AXI_0_bvalid(m_axi_bvalid),
.S00_AXI_0_rdata(m_axi_rdata),
.S00_AXI_0_rlast(m_axi_rlast),
.S00_AXI_0_rready(m_axi_rready),
.S00_AXI_0_rresp(m_axi_rresp),
.S00_AXI_0_rvalid(m_axi_rvalid),
.S00_AXI_0_wdata(m_axi_wdata),
.S00_AXI_0_wlast(m_axi_wlast),
.S00_AXI_0_wready(m_axi_wready),
.S00_AXI_0_wstrb(m_axi_wstrb),
.S00_AXI_0_wvalid(m_axi_wvalid),

//Clocks and Resets
.aclk1_0(clk), //MIG clock (100MHz)
.aclk_0(axi_aclk_out), //PCIE clock (125MHz)

(continues on next page)
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.aresetn_0(aresetn) //use MIG reset signal
);

We will also add in the necessary MIG ports and parameters that was present in the MIG example design.

//INSERT PARAMETERS FOR MIG

//***************************************************************************
// Traffic Gen related parameters
//***************************************************************************
parameter BEGIN_ADDRESS = 32'h00000000,
parameter END_ADDRESS = 32'h00ffffff,
parameter PRBS_EADDR_MASK_POS = 32'hff000000,
parameter ENFORCE_RD_WR = 0,
parameter ENFORCE_RD_WR_CMD = 8'h11,
parameter ENFORCE_RD_WR_PATTERN = 3'b000,
parameter C_EN_WRAP_TRANS = 0,
parameter C_AXI_NBURST_TEST = 0,

//***************************************************************************
// The following parameters refer to width of various ports
//***************************************************************************
parameter CK_WIDTH = 1, // # of CK/CK# outputs to memory.
parameter nCS_PER_RANK = 1, // # of unique CS outputs per rank for phy
parameter CKE_WIDTH = 1, // # of CKE outputs to memory.
parameter DM_WIDTH = 1, // # of DM (data mask)
parameter ODT_WIDTH = 1, // # of ODT outputs to memory.
parameter BANK_WIDTH = 3, // # of memory Bank Address bits.
parameter COL_WIDTH = 10, // # of memory Column Address bits.
parameter CS_WIDTH = 1, // # of unique CS outputs to memory.
parameter DQ_WIDTH = 8, // # of DQ (data)
parameter DQS_WIDTH = 1,
parameter DQS_CNT_WIDTH = 1, // = ceil(log2(DQS_WIDTH))
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter ECC = "OFF",
parameter ECC_TEST = "OFF",
parameter nBANK_MACHS = 4,
parameter RANKS = 1, // # of Ranks.
parameter ROW_WIDTH = 14, // # of memory Row Address bits.
parameter ADDR_WIDTH = 28, // # = RANK_WIDTH + BANK_WIDTH + ROW_WIDTH +
→˓COL_WIDTH;

// Chip Select is always tied to low for
→˓single rank devices

//***************************************************************************
// The following parameters are mode register settings
//***************************************************************************
parameter BURST_MODE = "8",// DDR3 SDRAM:

// Burst Length (Mode Register 0).
// # = "8", "4", "OTF".

//***************************************************************************
// The following parameters are multiplier and divisor factors for PLLE2.
// Based on the selected design frequency these parameters vary.
//***************************************************************************
parameter CLKIN_PERIOD = 5000, // Input Clock Period
parameter CLKFBOUT_MULT = 4,// write PLL VCO multiplier

(continues on next page)
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parameter DIVCLK_DIVIDE = 1, // write PLL VCO divisor
parameter CLKOUT0_PHASE = 315.0,// Phase for PLL output clock (CLKOUT0)
parameter CLKOUT0_DIVIDE = 1, // VCO output divisor for PLL output clock
→˓(CLKOUT0)
parameter CLKOUT1_DIVIDE = 2,// VCO output divisor for PLL output clock
→˓(CLKOUT1)
parameter CLKOUT2_DIVIDE = 32, // VCO output divisor for PLL output clock
→˓(CLKOUT2)
parameter CLKOUT3_DIVIDE = 8,// VCO output divisor for PLL output clock
→˓(CLKOUT3)
parameter MMCM_VCO = 800,// Max Freq (MHz) of MMCM VCO
parameter MMCM_MULT_F = 8, // write MMCM VCO multiplier
parameter MMCM_DIVCLK_DIVIDE = 1,// write MMCM VCO divisor

//***************************************************************************
// Simulation parameters
//***************************************************************************
parameter SIMULATION = "FALSE",

// Should be TRUE during design simulations and
// FALSE during implementations

//***************************************************************************
// IODELAY and PHY related parameters
//***************************************************************************

parameter TCQ_MIG = 0.1, //100 ps for MIG

parameter DRAM_TYPE = "DDR3",
//***************************************************************************
// System clock frequency parameters
//***************************************************************************
parameter nCK_PER_CLK = 4, // # of memory CKs per fabric CLK

//***************************************************************************
// AXI4 Shim parameters
//***************************************************************************
parameter C_S_AXI_ID_WIDTH = 4, // Width of all master and slave ID
→˓signals. # = >= 1.
parameter C_S_AXI_ADDR_WIDTH = 27,// Width of S_AXI_AWADDR, S_AXI_ARADDR,
→˓M_AXI_AWADDR and M_AXI_ARADDR for all SI/MI slots. # = 32.
parameter C_S_AXI_DATA_WIDTH = 32, // Width of WDATA and RDATA on SI slot.
→˓Must be <= APP_DATA_WIDTH. # = 32, 64, 128, 256.
parameter C_S_AXI_SUPPORTS_NARROW_BURST = 0, // Indicates whether to instatiate
→˓upsizer. Range: 0, 1

//***************************************************************************
// Debug parameters
//***************************************************************************
parameter DEBUG_PORT = "OFF",// # = "ON" Enable debug signals/controls.
→˓"OFF" Disable debug signals/controls.
parameter RST_ACT_LOW = 0// =1 for active low reset, =0 for active high.

) (

output [3:0] pci_exp_txp,
(continues on next page)
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output [3:0] pci_exp_txn,
input [3:0] pci_exp_rxp,
input [3:0] pci_exp_rxn,

input sys_clk_p,
input sys_clk_n,
input sys_rst_n, //ACTIVE LOW

//INSERT INPUTS/OUTPUTS FOR MIG
// Inouts

inout [7:0] ddr3_dq,
inout [0:0] ddr3_dqs_n,
inout [0:0] ddr3_dqs_p,

// Outputs
output [13:0] ddr3_addr,
output [2:0] ddr3_ba,
output ddr3_ras_n,
output ddr3_cas_n,
output ddr3_we_n,
output ddr3_reset_n,
output [0:0] ddr3_ck_p,
output [0:0] ddr3_ck_n,
output [0:0] ddr3_cke,
output [0:0] ddr3_cs_n,
output [0:0] ddr3_dm,
output [0:0] ddr3_odt,

// Single-ended system clock
input sys_clk_i,
output tg_compare_error,
output init_calib_complete,

// System reset - Default polarity of sys_rst pin is Active Low.
// System reset polarity will change based on the option
// selected in GUI.
input sys_rst //Active HIGH

);

///////////////////////////

//INSERT FUNCTIONS FROM MIG TOP FILE

function integer clogb2 (input integer size);
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)

size = size >> 1;
end

endfunction // clogb2

function integer STR_TO_INT;
input [7:0] in;
begin
if(in == "8")

(continues on next page)
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STR_TO_INT = 8;
else if(in == "4")

STR_TO_INT = 4;
else

STR_TO_INT = 0;
end

endfunction

//INSERT LOCALPARAMS FROM MIG TOP FILE

localparam DATA_WIDTH = 8;
localparam RANK_WIDTH = clogb2(RANKS);
localparam PAYLOAD_WIDTH = (ECC_TEST == "OFF") ? DATA_WIDTH : DQ_WIDTH;
localparam BURST_LENGTH = STR_TO_INT(BURST_MODE);
localparam APP_DATA_WIDTH = 2 * nCK_PER_CLK * PAYLOAD_WIDTH;
localparam APP_MASK_WIDTH = APP_DATA_WIDTH / 8;
//***************************************************************************
// Traffic Gen related parameters (derived)
//***************************************************************************
localparam TG_ADDR_WIDTH = ((CS_WIDTH == 1) ? 0 : RANK_WIDTH) + BANK_WIDTH + ROW_
→˓WIDTH + COL_WIDTH;
localparam MASK_SIZE = DATA_WIDTH/8;
localparam DBG_WR_STS_WIDTH = 40;
localparam DBG_RD_STS_WIDTH = 40;

//INSERT MIG WIRE DECLARATIONS

wire clk;
wire rst;
wire mmcm_locked;
reg aresetn;
wire app_sr_active;
wire app_ref_ack;
wire app_zq_ack;
wire app_rd_data_valid;
wire [APP_DATA_WIDTH-1:0] app_rd_data;
wire mem_pattern_init_done;
wire cmd_err;
wire data_msmatch_err;
wire write_err;
wire read_err;
wire test_cmptd;
wire write_cmptd;
wire read_cmptd;
wire cmptd_one_wr_rd;

//ADDITIONAL WIRES NEEDED TO ADD
wire app_sr_req;

wire app_ref_req;

wire app_zq_req;

// Slave Interface Write Address Ports
wire [C_S_AXI_ID_WIDTH-1:0] s_axi_awid;
wire [C_S_AXI_ADDR_WIDTH-1:0] s_axi_awaddr;
wire [7:0] s_axi_awlen;

(continues on next page)
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wire [2:0] s_axi_awsize;
wire [1:0] s_axi_awburst;
wire [0:0] s_axi_awlock;
wire [3:0] s_axi_awcache;
wire [2:0] s_axi_awprot;
wire s_axi_awvalid;
wire s_axi_awready;

// Slave Interface Write Data Ports
wire [C_S_AXI_DATA_WIDTH-1:0] s_axi_wdata;
wire [(C_S_AXI_DATA_WIDTH/8)-1:0] s_axi_wstrb;
wire s_axi_wlast;
wire s_axi_wvalid;
wire s_axi_wready;

// Slave Interface Write Response Ports
wire s_axi_bready;
wire [C_S_AXI_ID_WIDTH-1:0] s_axi_bid;
wire [1:0] s_axi_bresp;
wire s_axi_bvalid;

// Slave Interface Read Address Ports
wire [C_S_AXI_ID_WIDTH-1:0] s_axi_arid;
wire [C_S_AXI_ADDR_WIDTH-1:0] s_axi_araddr;
wire [7:0] s_axi_arlen;
wire [2:0] s_axi_arsize;
wire [1:0] s_axi_arburst;
wire [0:0] s_axi_arlock;
wire [3:0] s_axi_arcache;
wire [2:0] s_axi_arprot;
wire s_axi_arvalid;
wire s_axi_arready;

// Slave Interface Read Data Ports
wire s_axi_rready;
wire [C_S_AXI_ID_WIDTH-1:0] s_axi_rid;
wire [C_S_AXI_DATA_WIDTH-1:0] s_axi_rdata;
wire [1:0] s_axi_rresp;
wire s_axi_rlast;
wire s_axi_rvalid;
wire cmp_data_valid;
wire [C_S_AXI_DATA_WIDTH-1:0] cmp_data; // Compare data
wire [C_S_AXI_DATA_WIDTH-1:0] rdata_cmp; // Read data
wire dbg_wr_sts_vld;
wire [DBG_WR_STS_WIDTH-1:0] dbg_wr_sts;
wire dbg_rd_sts_vld;
wire [DBG_RD_STS_WIDTH-1:0] dbg_rd_sts;
wire [11:0] device_temp;

`ifdef SKIP_CALIB // skip calibration wires
wire calib_tap_req;
reg calib_tap_load;
reg [6:0] calib_tap_addr;
reg [7:0] calib_tap_val;
reg calib_tap_load_done;
`endif
assign tg_compare_error = cmd_err | data_msmatch_err | write_err | read_err;

88 Chapter 10. AXI MM to PCIe IP Overview



fpgaemu, Release 0.1

In addition, we need to tie some of the MIG input wires to ground, since the SmartConnect itself does not have every
connection, as well as initialize the debug ports and calibration logic.

//INSERT REMAINING RTL FROM MIG TOP FILE
//*****************************************************************
// Default values are assigned to the debug inputs
//*****************************************************************
assign dbg_sel_pi_incdec = 'b0;
assign dbg_sel_po_incdec = 'b0;
assign dbg_pi_f_inc = 'b0;
assign dbg_pi_f_dec = 'b0;
assign dbg_po_f_inc = 'b0;
assign dbg_po_f_dec = 'b0;
assign dbg_po_f_stg23_sel = 'b0;
assign po_win_tg_rst = 'b0;
assign vio_tg_rst = 'b0;

`ifdef SKIP_CALIB

//***************************************************************************
// Skip calib test logic
//***************************************************************************
reg[3*DQS_WIDTH-1:0] po_coarse_tap;
reg[6*DQS_WIDTH-1:0] po_stg3_taps;
reg[6*DQS_WIDTH-1:0] po_stg2_taps;
reg[6*DQS_WIDTH-1:0] pi_stg2_taps;
reg[5*DQS_WIDTH-1:0] idelay_taps;
reg[11:0] cal_device_temp;

always @(posedge clk) begin
// tap values from golden run (factory)
po_coarse_tap <= #TCQ_MIG 'h2;
po_stg3_taps <= #TCQ_MIG 'h0D;
po_stg2_taps <= #TCQ_MIG 'h1D;
pi_stg2_taps <= #TCQ_MIG 'h1E;
idelay_taps <= #TCQ_MIG 'h08;
cal_device_temp <= #TCQ_MIG 'h000;

end

always @(posedge clk) begin
if (rst)
calib_tap_load <= #TCQ_MIG 1'b0;
else if (calib_tap_req)
calib_tap_load <= #TCQ_MIG 1'b1;

end

always @(posedge clk) begin
if (rst) begin
calib_tap_addr <= #TCQ_MIG 'd0;
calib_tap_val <= #TCQ_MIG po_coarse_tap[3*calib_tap_addr[6:3]+:3]; //'d1;
calib_tap_load_done <= #TCQ_MIG 1'b0;
end else if (calib_tap_load) begin
case (calib_tap_addr[2:0])

3'b000: begin
calib_tap_addr[2:0] <= #TCQ_MIG 3'b001;
calib_tap_val <= #TCQ_MIG po_stg3_taps[6*calib_tap_addr[6:3]+:6]; //

→˓'d19;
end

(continues on next page)
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3'b001: begin
calib_tap_addr[2:0] <= #TCQ_MIG 3'b010;
calib_tap_val <= #TCQ_MIG po_stg2_taps[6*calib_tap_addr[6:3]+:6]; //

→˓'d45;
end

3'b010: begin
calib_tap_addr[2:0] <= #TCQ_MIG 3'b011;
calib_tap_val <= #TCQ_MIG pi_stg2_taps[6*calib_tap_addr[6:3]+:6]; //

→˓'d20;
end

3'b011: begin
calib_tap_addr[2:0] <= #TCQ_MIG 3'b100;
calib_tap_val <= #TCQ_MIG idelay_taps[5*calib_tap_addr[6:3]+:5]; //'d1;
end

3'b100: begin
if (calib_tap_addr[6:3] < DQS_WIDTH-1) begin

calib_tap_addr[2:0] <= #TCQ_MIG 3'b000;
calib_tap_val <= #TCQ_MIG po_coarse_tap[3*(calib_tap_

→˓addr[6:3]+1)+:3]; //'d1;
calib_tap_addr[6:3] <= #TCQ_MIG calib_tap_addr[6:3] + 1;

end else begin
calib_tap_addr[2:0] <= #TCQ_MIG 3'b110;
calib_tap_val <= #TCQ_MIG cal_device_temp[7:0];
calib_tap_addr[6:3] <= #TCQ_MIG 4'b1111;

end
end

3'b110: begin
calib_tap_addr[2:0] <= #TCQ_MIG 3'b111;
calib_tap_val <= #TCQ_MIG {4'h0,cal_device_temp[11:8]};
calib_tap_addr[6:3] <= #TCQ_MIG 4'b1111;

end

3'b111: begin
calib_tap_load_done <= #TCQ_MIG 1'b1;

end
endcase
end

end

//****************skip calib test logic end**********************************

`endif
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Fig. 3: The complete PCIe and MIG schematic

10.5 Simulating the AXI MM PCIe MIG Example Design

After instantiating the MIG into the PCIe’s example design, we also need to copy over some modules from the MIG’s
generated design for the PCIe MIG simulation to run properly. We need to import the relevant DDR3 Memory Model
and Wire Delay modules.

Note: The MIG 7 Series IP Example Design will output these modules, so generate the design if you have not done
so already.

In
the
Source
di-
rec-
tory,
se-
lect
Add
Sources,
Add
or
Cre-
ate
Sim-
u-
la-
tion
Sources,
and
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then
point
it
to the modules in the MIG Example Design folder located in the user directory. On Windows (or Linux), navigate to
the directory where your MIG project is saved.

From there, locate the project’s imported directory. An example directory would be similar to <project name>\
srcs\sim_1\imports\imports.

The directory should look like this:

Select the ddr3_model.sv, ddr3_model_parameters.vh, and wiredly.v files to add them to the project.

Modify the simulation top file to properly instantiate these new modules, including all MIG parameters. The example
simulation top file can be found here. Make sure to rename axi_pcie_board.v to board.v!

Run a Behavioral Simulation, making sure to add the propery AXI signals for the DUT in the Scope Window (such as
the u_ip_top module).

Important: Remember to run the command run -all in the TCL console to allow the simulation to fully complete!

• The MIG will take about 120 us to fully calibrate. Afterwards, the init_calib_complete pin will go
HIGH, outputting this message in the TCL console.

board.mem_rnk[0].gen_mem[0].u_comp_ddr3.cmd_task: at time 120768564.0 ps INFO: Refresh
board.mem_rnk[0].gen_mem[0].u_comp_ddr3.cmd_task: at time 122328564.0 ps INFO:
→˓Activate bank 0 row 0000
PHY_INIT: Write Calibration completed at 124203100.0 ps
board.mem_rnk[0].gen_mem[0].u_comp_ddr3.cmd_task: at time 125424564.0 ps INFO:
→˓Precharge All
board.mem_rnk[0].gen_mem[0].u_comp_ddr3.cmd_task: at time 125424564.0 ps INFO:
→˓Precharge bank 0
MIG Calibration Done

• Around 200 us, the PCIe Endpoint will also fully calibrate. The simulated Root Port Complex will then begin
to send Transaction Layer Packets (TLPs) to the PCIe Endpoint signaling for a read and a write to the DDR3
memory.

• The Endpoint will then convert these TLPs to the correct AXI Memory Mapped read/write signals and send
these through the SmartConnect into the MIG. Eventually, the MIG will receive these AXI requests on its AXI
Slave port and subsequently perform the desired reads/writes to the simulated DDR3 memory.
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• If successful, the TCL console will output this message:

[187477264.0 ps] : TSK_PARSE_FRAME on Receive
[187781296.0 ps] : Test PASSED --- Write Data: 01020304 successfully received
[187821329.0 ps] : Finished transmission of PCI-Express TLPs
Test Completed Successfully
$finish called at time : 187821329 ps : File "..."

Like the original PCIe example design simulation, this test writes the data 0x01020304 to address 0x00000010. It
then reads the data back from the same address, verifying that it is the same value. If your simulation looks like this,
congratulations! You have successfully implemented a PCIe Endpoint with a MIG Controller.

10.5. Simulating the AXI MM PCIe MIG Example Design 93



fpgaemu, Release 0.1

Fig. 4: Successful PCIe Simulation
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CHAPTER

ELEVEN

DMA/BRIDGE FOR PCIE IP OVERVIEW

11.1 DMA IP Overview

Xilinx’s DMA/Bridge Subsystem for PCI Express IP is an alternative to the AXI Memory Mapped to PCI Express
IP, which was used previously in the “AXI Memory Mapped to PCI Express” section. It still provides a customizable
PCIe interface to the FPGA, but this IP also utilizes the DMA (Direct Memory Access) protocol.

Xilinx’s user guide for this IP can be found here and Xilinx also provides an XDMA driver that can be used to
interface with this IP over Windows 10 or Linux OS. This particular driver can be found here, and a helpful guide to
using this driver can be found here. Essentially, instead of manually performing read and write operations to specific
addresses (this is called Programmable Input/Output or PIO), DMA provides a much more efficient way to handle
data transactions. The DMA PCIE IP core also provides an AXILite interface and an AXI Memory Mapped “Bypass”
interface for simple PIO operations.

11.2 The DMA Protocol

The entire goal of DMA is to make data transactions more efficient and less work for the CPU. Instead of having to
specify each transaction with the corresponding data and address, DMA allows for transfer of large batches of data,
all independent of the CPU. In general, the DMA protocol works like this:

1. User specifies whether the transaction will be a “Host to Card” (H2C) or “Card to Host”. Data moving from the
host machine to the FPGA will be considered H2C in this case.

2. User specifies the starting source address and starting destination address of the data, as well as the size of
the transfer in bytes. If the transaction is H2C, then the source address will be in PCIe memory space and the
destination address will be in AXI memory space.

3. The CPU programs the DMA engine with this information, and then the DMA begins transferring all of the
data. Once the data has finished transferring, the DMA will send an interrupt back to the CPU.

This specific type of DMA engine is known as a “Scatter Gather” DMA, which means that the target data, source
address, destination address, and transfer length are all configured in registers known as “Descriptors”. Each de-
scriptor is stored in host memory, and they act as pointers to designated buffers within host memory based on the
source/destination address and the transfer length specified. Here is an image from the Xilinx XDMA Driver Debug-
ging Guide, which shows the exact configuration of the Descriptor registers:

Once a descriptor register has been filled out with the correct information, then it is ready to perform the data transac-
tion. In order to start the transaction, the user will need to write to a DMA control register (register 0x04 specifically)
in order to enable the transaction. When the data is finished transmitting, the DMA will send an interrupt to the CPU,
acknowledging the end of the transfer. More information about the DMA control registers can be found in Xilinx’s
User Guide for the DMA PCIe IP.
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Fig. 1: Figure 1: Xilinx DMA Descriptor Format
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Below is an image from the “DMA for PCI Express” Youtube video from Xilinx, which outlines the DMA process
using the Descriptor registers. Each of the descriptors correspond to an allocated buffer within System Memory, and
then that buffer is either filled by data from the FPGA (C2H transfer), or the data from that buffer is transferred to the
FPGA (H2C transfer).

Fig. 2: Figure 2: Typical DMA Operation Diagram

The XDMA Driver is what allows us to be able to read and write to these configuration registers, and Xilinx’s XDMA
Driver Debugging guide is a great resource to understand exactly how it works. In brief, here is a short summary from
the DMA PCIe User Guide that explains how the driver works to create a H2C transaction:

The process for a C2H Transfer is very similar to these steps, except that the data is being transferred from the user
side to the host machine. These steps can be seen below:

11.3 Configuring the DMA IP

The user configuration of the DMA/Bridge Subsystem for PCI Express IP is very similar to the AXI Memory Mapped
to PCI Express IP. It can be customized by either selecting the IP in the IP Integrator tool or by inserting it into a block
diagram. Here are some of the new customization options presented with this IP:

Basic tab:

• You can select whether you would like to use AXI Memory Mapped or AXI Stream for the DMA interface.

• Just like the AXI Memory Mapped PCIe IP, you can also specify the lane width, link speed, AXI data width,
AXI clock frequency, reference clock frequency, and external PIPE interface for faster simulations.

BARs tab:
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Fig. 3: Figure 3: H2C Transaction
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Fig. 4: Figure 4: C2H Transaction
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Fig. 5: Figure 5: IP Configuration - “Basic” Tab
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Fig. 6: Figure 6: IP Configuration - “BARs” Tab
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• Here, you can choose to enable or disable the AXILite and AXI Bypass Base Address Registers (BARs), as well
as specify the desired offset address and size.

Note: Based on your selections in this window, the BARs will be created according to this table from the Xilinx IP
User Guide:

Fig. 7: Figure 7: BAR Configurations

DMA tab:

Fig. 8: Figure 8: IP Configuration - “DMA” Tab

• Here, you can select the number of DMA read and write channels, as well as specify other parameters related to
DMA operation.

Seen below is an example configuration of this IP in a typical block diagram. This particular design was generated by
the Xilinx “Run Block Automation” tool, and can be easily recreated by following these steps:
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1. Open up a new block diagram and place the DMA /Bridge Subsystem for PCI Express IP into the page.

2. Click on the green banner at the top of the screen that says “Run Block Automation”, and then change the
“Automation Level” to “Subsystem Level”.

3. Optionally, replace the AXI Interconnect with an AXI Smartconnect for more up-to-date designs.

Fig. 9: Figure 9: Example Block Diagram

As we can see from this design, our 100MHz differential reference clock needs to be connected through a IBUFDSGTE
utility buffer before it can be connected to the sys_clk input of the IP. This was also the case for the AXI Memory
Mapped to PCI Express IP. We also inserted a constant value of 0 to the usr_irq_req port in order to ensure that we are
not accidentally sending any unwanted interrupts.

Unlike the AXI Memory Mapped to PCI Express IP, the sys_rst_n pin can be directly connected to the PERST (PCIe
Reset) pin for an Active Low reset. Then, the axi_aresetn output should be used to reset all other components driven
by the DMA PCIe IP (Smartconnects, BRAM, etc.).

The axi_aclk output port contains a 125MHz clock, which is the operating frequency of the DMA PCIe core. The ex-
ternal pins coming from the pcie_mgt output are what physically connect to the PCIe header to allow for the commu-
nication of Transaction Layer Packets (TLPs) from the host machine to the PCIe endpoint (FPGA). The user_link_up
output port is a status port that goes high once a connection has been made between the host machine and the PCIe
endpoint.

Lastly, the M_AXI port is what connects to the device(s) that you would like to interface using the DMA protocol, the
M_AXI_BYPASS port is what connects to the device(s) that you would like to interface using standard AXI-full PIO
protocol, and the M_AXI_LITE port is what connects to the device(s) that you would like to interface using AXILITE
PIO protocol. In this specific case, we have an AXI BRAM controller connected to each of the three interfaces, and
these are mapped into the AXI space as seen in the Address Editor image below:

11.4 Additional Resources
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Fig. 10: Figure 9: Example Block Diagram (Address Editor)
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CHAPTER

TWELVE

CREATING A CUSTOM AXI IP CORE

12.1 Packaging Custom IP

Xilinx provides a large library of premade IP cores that cover a multitude of applications. However, sometimes it is
best to create and modify our own cores to suit specific needs, such as creating an emulation environment. Instead of
instantiating peripherals in Verilog, we can instead take advantage of the plug-and-play nature of the AXI protocol to
easily connect them to an AXI master through a SmartConnect. This article will step through the process of packaging
a custom peripheral using the IP Integrator.

Note: If you need a refresher on the AXI protocol, check here.

12.2 A Simple 8-Bit Counter

As the FPGA ‘Hello World’, a simple 8-bit counter is the perfect introductory example for a custom IP block without
the need for a development board.

Fig. 1: Block Diagram of our counter
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Our first device under test (DUT) will be an 8-bit counter with five inputs: clock, enable, reset, increment/
decrement, and a start value, as well as one output - the current count value. The counter will follow these
conditions:

• The enable flag, when HIGH, will allow the count to change; otherwise, it will keep the same value.

• When a new start value is entered, the counter will automatically start incrementing or decrementing from that
new value.

• There is no default start value, so an initial start value must be given.

• The reset flag will reset the count to the given start value.

To create this counter, first create a new RTL project and define its directory. For this example, we will use the VC707
evaluation board, but other FPGA boards can be used, like the KC705.

After the project opens, go to Add Sources and select Add or Create Design Sources. Create a new file, select the
desired HDL (we will use SystemVerilog here), and name the file as counter. Our new DUT counter.sv will be
created. A pop-up window will appear, prompting to define a module and specify I/O ports. Customize the counter as
so and accept.
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Make counter_out a register and add in the counter logic.

//timescale 1ns/1ps

module counter(
input aclk,
input enable, //will enable or disable count
input aresetn, //will reset count back to start value
input inc_dec, //will indicate wheather increment count or decrement count. inc

→˓count is 0, dec count is 1
input [7:0] start_value, //value to start counting from
output reg [7:0] count_out //count value
);

//local registers
reg [7:0] count_next; //next count value
reg [7:0]prev_start_value=start_value;

always @(posedge aclk)
begin
if(aresetn ==0 || prev_start_value!=start_value) //reset mode or new start value

begin
count_out =start_value; //reset count out to start value
prev_start_value=start_value; //set prev start value to start value

end
else //reset=1, no reset

begin
if(enable==1) //enable is high a

begin
if(inc_dec==0) begin//and incdec is low

count_next=count_out+1; //increment next value
end
else begin //inc_dec is high

count_next=count_out-1; // decrement next value
end

count_out=count_next; // set output equal to next value
end
else count_out=count_out; //same value if no enable
end

end
endmodule

Counter Testbench

Now that we have instantiated our design, we will simulate it using a simple testbench.

As a refresher, a test bench is HDL code that allows you to provide a documented, repeatable set of stimuli that is
portable across different simulators.

After the project opens, go to Add Sources and select Add or Create Simulation Sources. Create a new file, select the
desired HDL (we will use SystemVerilog here), and name the file as counter_tb. Our new testbench counter_tb.sv
will be created.

Create a testbench that practices all functions of your custom DUT. For this simple counter example, we will create a
testbench that exercises the enable/disable, reset, increment/decrement, start value, and lastly ensure that the counter
rolls over correctly.
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//timescale 1ns/1ps

module counter_tb();
//create necessary variables
reg aclk;
reg enable;
reg aresetn;
reg inc_dec;
reg [7:0]start_value;
wire[7:0] count_out;

//create DUT
counter DUT(

.aclk(aclk),

.enable(enable),

.aresetn(aresetn),

.inc_dec(inc_dec),

.start_value (start_value),

.count_out(count_out)
);

//define clk
always begin

#5 //delay 5ns
aclk=~aclk;//should be a 100MHz clk

end

initial begin
//will turn in after 100ns and start inc from af for 100ns
//then reset and new start value at c0 will increment for 50
//disbale for 50ns
//enable again and then decrement

aresetn=0;//turn on reset
enable=0;//not enabled
aclk=0;
start_value=8'haf;//set a start value
inc_dec=0;//will increment

#100 //100ns delay
aresetn=1;//turn off reset
#20
enable=1;//turn on enable

#100
aresetn=0;
start_value=8'hc0;//new start value
aresetn=1; //lift the reset
#50
enable=0;
#50ns
enable=1;
inc_dec=1;

end
endmodule

To run this very simple testbench, follow the instructions below:

1. On the left sidebar, right click on Run Simulation and select Run Behavioral Simulation.
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2. The waveform should have automatically opened. It may be hard to see what you are looking at because the
simulation might be very zoomed in. If this is the case, ensure to zoom out so you can see several clock cycles
of aclk.

Fig. 2: Working Start Value, Increment, Decrement, and Enable

Fig. 3: Working Reset

Once the simple counter slave DUT is working as expected, ensure you know where to find to the project files in your
computer. we recommend closing the project to avoid confusion while following the future instructions.

12.3 Packaging a Custom AXI4Lite IP

This section focuses on how to create a custom AXI4Lite IP and how to correctly instantiate the DUT.

This specific example will focus on a simple counter. Referring to our previous counter block diagram, this is where
the enable, increment/decrement, and start value will be mapped to the AXI4Lite slave registers. In
addition, the inputs of aclk and aresetn will be connected to the AXI clock and reset. Afterwards, we will add a
sanity check for slave register 3 along with an output port count_out. It is important to note that because the reset
and registers will be tied to the AXI4Lite slave registers and that aresetn will reset all the slave register values. This
means that once a reset is performed, the enable, inc/dec, start value, and count_out will all be set back to
0. An AXI Write is required to change any values from 0 after a reset has occurred.

Because our custom IP is very simple and does not generate any commands to send to another peripheral, we will be
creating only a Slave IP. Sn example of when we would want to use both a slave and a master interface in the same IP
would be if we wanted to have this same counter, but with the additional features of being able to read and write to an
external memory, as we will guide you through in this section here

Create a new project and name as desired. This is the project that will be the main project for this simple counter
IP. Select the same board and settings as selected previously. Once the new project is opened, go to Tools and select
Create and Package New IP. . . A new window will open and explain the features. Click Next and select Create
AXI4Peripheral. Name the IP as desired and select Next. Adding and subtracting new interfaces can be done with the
+ and - buttons. Remember to select the desired Interface Type, Interface Mode, Data Width, and Number of Registers.
For a counter, modify the parameters as shown in the image below. These parameters mean that there will be only one
interface - an AXI4Lite slave with 4 registers, each with a data width 32 bits. When finished, click Next.

Select Edit IP and click Finish. A new design source and IP Packager will open. The next step is to add our DUT
(counter) into this project. In order to do this select Add Sources and select Add or Create Design Sources. Select next
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Fig. 4: Add Interfaces to AXI4 peripheral

Fig. 5: DUT successfully added to Design Sources
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and Add Files to add your DUT. Once you have correctly selected your DUT, it will appear in the window. When you
select Finish, the file will be successfully added to your Sources window.

The DUT needs to be correctly instantiated into the custom AXI IP. In order to do this, open the file ending with
_S00_AXI as it’s name. When we created this AXI Peripheral, we selected 4 registers with 32 bits of data. Those
registers are shown in this file as slv_reg0-3. These are where we are going to store the necessary data for our
instantiated DUT. The changes that should be made are listed below:

Important: If you wish to download the _S00_AXI file directly, go here.

• Create a User Defined output port, which will be a wire and 8 bits wide, called count_out.

Fig. 6: Adding Output Port to the Slave File

• Scroll down and instantiate the DUT under where it says Add User Logic Here. Include the necessary param-
eters. In this counter, tie slv_reg0 bit 0 to enable, increment/decrement to slv_reg0 bit 1 and
start value to slv_reg1 bits 7-0. Tie the clock and reset to the slave AXI clock and reset.

• Use slv_reg3 as a sanity check. Set slv_reg3 to abcd1234. This means that everytime slv_reg3 is read it
will always be abcd1234.
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Fig. 7: Adding User Logic DUT to the Slave File

Fig. 8: Adding a Sanity Check to the Slave File
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The custom counter is correctly instantiated into the file ending in _S00_AXI. Now it is necessary to instantiate this
counter into the top file. There are two steps necessary to do this:

• We must add our output port count_out in the ports of the AXI slave bus interface S00_AXI.

Fig. 9: Adding Output Port to Top File

• Add the ports to the instancation of the AXI bus interface S00_AXI.

Fig. 10: Adding Ports to AXI Bus Interface in Top

Important: If you want to download the top file instead, go here.
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Now that the DUT is correctly instantiated, the next step is to open the Package IP tab. Under Packaging Steps, verify
that every category has a green check mark next to it. In order to achieve this, click on a category such as File Groups
and select Merge changes from File Groups Wizard. This will automatically merge the changes made. Continue this
with all of the necessary categories.

Once at the Review and Package category, click IP has been modified and then click Re-Package IP at the bottom of
the window. A new window will pop up and tell you the directory of your IP. Keep note of this directory in case you
might need to add the repository to a new project.

Once the IP has been correctly packaged, you will be prompted Do you want to close the project. Select Yes and the
project that you were editing the IP will be closed, however, the “main project” that we created at the beginning of this
section will still be open.

12.4 Adding a Custom AXI IP to a Design

This section will walk through how to add the packaged custom IP to a block diagram and test its functionality with
AXI VIP.

If you have been following along with us, congratulations! The custom IP is now correctly packaged! The project
made earlier in this tutorial should still be open. The repository for our IP was automatically added to this project, so
integrating it into a block design is very straightforward.

• Select Create New Block Design and name it as desired.

• A new window will open. Select the + to add IP into the block design. Look for the custom IP that was just
created and add it to the block design.

Fig. 11: Add Custom IP to Block Diagram

• Add the AXI VIP from the IP catalog. Double click on the AXI VIP and make it a Master and change the
interface mode to manual for protocol, and change it to AXI4LITE. Select OK.

• Connect the Master port of the AXI VIP to the slave of the counter.
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Fig. 12: Add AXI VIP Parameters

• Make the clock and reset ports of the AXI VIP external. In order to do this, right click on the signal such
as aclk of the AXI VIP and select Make External. Once the clock and reset of the AXI VIP are external, drag
the clock and reset of the counter IP to connect with the appropriate external signal.

• On the counter IP, make the count_out ports external.

Fig. 13: Simple Counter Block Diagram

• Go to the Address Editor tab and right-click on the custom AXI IP. Click Assign. This will automatically assign
the address range for this IP. Keep note of it for the test bench; for example, the assigned base address may be a
hex value like 0x44A0_0000. If the address editor is not apparent on your screen, complete the next step and
you will recieve an error to assign addresses, and the address editor will appear.

• Go back to the block diagram and right-click on a blank spot in the design. Select Validate Design.

• The next step is to create a wrapper file which turns the block diagram into HDL. To do this go to the Sources
and right-click on the source for your block diagram (the default name is design_1 or something similar).
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Select Create HDL Wrapper and then Let Vivado manage wrapper and auto-update.

• The next step is to create a testbench to ensure the custom AXI IP works as intended.

12.5 Creating a Testbench for a Custom DUT

This section will walk through the necessary parts to make a testbench.

After the project opens, go to Add Sources and select Add or Create Simulation Sources. Create a new file, select the
desired HDL (we will use SystemVerilog here), and name the file as desired (this example is called counter_ip_tb. Our
new testbench counter_ip_tb.sv will be created.

When using the AXI VIP, there are two packages that you must import.

Note: The packages will be underlined in red and appear as a syntax error. This is a Vivado bug and can be safely
ignored.

The first package axi_vip_pkg::*; needs to be copied directly. The second package is a hierarchy path that may
be different for you. The file hierarchy should be found from the sources tab.

Fig. 14: AXI VIP Component Hierarchy

An example of the two imported packages for this hierarchy are shown below:

Fig. 15: Import Packages Example

Be sure to import these packages before the module your_testbench_name.

Next, after the autogenerated module counter_ip_tb(); (the counter_ip_tb will be replaced with what
you named your testbench), make sure to add a clk and reset bit and initialize them both to zero.
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After this, create names for both the addresses and data that will be sent (this is optional, you can instead insert the
addresses and data directly into the commands).

Next, instantiate the block design from the wrapper file.

From there, it is necessary to create a master agent vip, create an agent, and start the agent (using appropriate hiarchy
as well).

Fig. 16: Create and Start Master Agent for VIP

This master agent is for the AXI Verification IP and allows for you to simulate the custom IP recieving read and write
transactions. It is important to recognize that the AXI VIP is just for simulation purposes and allows us to test our
custom DUT without building the entire infrastructure around it.

From here, create the necessary logic to test all aspects of the custom DUT. It is important to note that this logic will
be executed sequentially, so ensure you have delays large enough to allow the necessary transactions enough time to
complete. For this simple counter example, the code is provided and also avalible for direct download below.

Because this simple DUT is an 8-bit counter, with an enable, increment/decrement, start value, and sanity check
register the testbench below exercises all of these features. Here is a quick outline of the testbench logic:

• Enables the counter in increment mode

• Write a start value to the counter and read it back to ensure it worked

• Write a new value AF to the start value

• Disable the counter

• Enable it again in increment mode

• Change to decrement mode

• Write new start value 11 to counter

• Read sanity check register (should always be abcd1234 even if write to it)

• Exercise the reset

• Enable counter and read value of start register

Important: If you want to download the testbench file directly, go here.
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//timescale 1ns / 1ps

//import necessary packages
import axi_vip_pkg::*;
import design_1_axi_vip_0_0_pkg::*;

module counter_ip_tb();

bit aclk = 0;
bit aresetn = 0;
logic[7:0] count_out;

xil_axi_ulong base_reg=32'h44A00000; //slv_reg0 is base reg enable bit is LSB, reg
→˓increment/decrement setting is bit 1
xil_axi_ulong start_value_reg = 32'h44A00004; //reg for start value. slv_reg1 is 4
→˓away from base
xil_axi_ulong sanity_check_reg = 32'h44A000C; //sanity check reg. slv_reg3 which is
→˓12 away from base reg
xil_axi_prot_t prot = 0;
xil_axi_resp_t resp;
//data to set settings
bit[31:0] enable_data = 32'h00000001; //bit 0 is tied to enable. high will enable.
→˓this data will also set inc/dec to increment (0001)
bit[31:0] disable_data=32'h00000000;//disable the enable and inc/dec set back to
→˓increment (0010)
bit[31:0] inc_dec =32'h00000003;//bit 1 is tied to inc/dec. high is decrement. this
→˓will set decrement and enable (0011)
//test data
bit[31:0] test_data1 = 32'h000000C0;
bit[31:0] test_data2 = 32'h000000AF;
bit[31:0] test_data3 = 32'h00000011;
bit[31:0] sanity_data;

//instantiate block design//
design_1_wrapper DUT(
.aclk_0(aclk),
.aresetn_0(aresetn),
.count_out_0(count_out)
);

//initialize AXI Master Agent
//create master agent vip

design_1_axi_vip_0_0_mst_t master_agent;

always begin
#5
aclk=~aclk;//100mhz clk
end

//create agent and start
initial begin
master_agent=new("master vip agent",DUT.design_1_i.axi_vip_0.inst.IF);
master_agent.start_master();

#100
aresetn = 1; //turn off reset

//enable

(continues on next page)

118 Chapter 12. Creating a Custom AXI IP Core



fpgaemu, Release 0.1

(continued from previous page)

#50
master_agent.AXI4LITE_WRITE_BURST(base_reg, prot, enable_data, resp); //write to

→˓enable. increment mode

//test read and write
#100
master_agent.AXI4LITE_WRITE_BURST(start_value_reg, prot, test_data1, resp); //

→˓write data c0 into start value register
#50
master_agent.AXI4LITE_READ_BURST(start_value_reg, prot, sanity_data, resp); //

→˓read start value reg
#100
master_agent.AXI4LITE_WRITE_BURST(start_value_reg, prot, test_data2, resp); //

→˓write data2 AF into start reg. still increment mode

//test enable/disable
#50
master_agent.AXI4LITE_WRITE_BURST(base_reg, prot, disable_data, resp); //disable.

→˓increment mode
#50
master_agent.AXI4LITE_WRITE_BURST(base_reg, prot, enable_data, resp); //write to

→˓enable. increment mode

//test decrement
#100
master_agent.AXI4LITE_WRITE_BURST(base_reg, prot, inc_dec, resp); //write to

→˓change to decrement mode
#100
master_agent.AXI4LITE_WRITE_BURST(start_value_reg, prot, test_data3, resp); //

→˓write data3 11 into start value

//sanity check
#100
master_agent.AXI4LITE_READ_BURST(sanity_check_reg, prot, sanity_data, resp); //

→˓read sanity check register. should be abcd1234

//test reset
#100
aresetn=0;//enable reset
#100
aresetn=1;//turn off reset

//enable and read start reg, should be 0 after reset
#100
master_agent.AXI4LITE_WRITE_BURST(base_reg, prot, enable_data, resp); //write to

→˓enable. increment mode
#100
master_agent.AXI4LITE_READ_BURST(start_value_reg, prot, sanity_data, resp); //

→˓read start value register

end

endmodule
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12.6 Interpreting Simulation Waveforms For a Custom DUT

This section will walk through how to understand the waveforms created from running your testbench for your custom
DUT.

1. On the left sidebar, right click on Run Simulation and select Run Behavioral Simulation.

Note: If you recieve an error, the message will often tell you a file you can locate on your computer that will have
more information. I highly recommend looking at this text document because it is very helpful when debugging!

2. Ensure you are running the simulation long enough to see all actions performed in the testbench by using the
TCL command run -all!

3. The waveform should have automatically opened. Add the desired signals that you would like to analyze to the
waveform. For the simple counter simulation, there are some signals we want to add to the waveform. These
are found in the left column under Scope. The first signal is axi_vip_0, this will show the reads and writes
that we initiate from the axi_vip in our testbench. In order to add a signal to the waveform, right click on the
desired signal and choose Add to Wave Window. The next group of signals necessary to add to the waveform are
for our custom DUT, in this example labeled myip_counter_0.

Fig. 17: Add Desired Signals to Waveform

4. Once these signals are added to the waveform, zoom out of the waveform so you can see several clock cycles
on the screen.

5. On the waveform, if you hover over the M_AXI it will tell you what master axi it is referring to (this will be
important once you create more advanced DUTs). The M_AXI in this case is referring to the axi_vip. This
means that in the testbench whenever you use the master agent to perform write or a read it will show up here
in the waveform.

6. For this simple counter DUT, the first command we had the axi_vip perform was to enable the counter. You
can see in the that the axi_vip initiated a write to the address of 44A0_0000 and the data it sent was a 1, as
shown in the figure below outlined in red.

7. From there, you can scroll down on the waveform to see the S_00 signals. These are the signals for the slave
simple counter. It shows that in the slave, the write address is 0 and the data is 1, which is completed at about
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Fig. 18: Simple Counter Waveform of Enable

220ns. This is what we expect because that is what we need to do to start this simple counter IP. If you return
to the previous image you can see that the counter began counting at about 240ns. You can continue to read the
waveforms in this manner.

Note: Ensure you are running the simulation long enough to see all actions performed in the testbench by using the
TCL command run -all!
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Fig. 19: Simple Counter Waveform of Enable pt.2
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CHAPTER

THIRTEEN

CREATING AN ADVANCED CUSTOM AXI DESCRIPTOR IP

This documentation is a continuation of Creating a Custom AXI IP Core. The purpose of this documentation is to
take the counter previously created and make it more advanced by allowing it to communicate with memory. In this
documentation the DUT will utilize BRAM through the standard IP catalog provided through Xilinx.

13.1 Features of Advanced DUT

Features of the Descriptor DUT:

• Write the current count value to memory (BRAM addr: 200)

• Read in an initial count value from memory (BRAM addr: 204 [7:0])

• Read in increment or decrement mode from memory (BRAM addr: 204 [8])

• Prompt the DUT to initiate a write or read transaction to memory

• External count_out bus port

Here is a brief description of the counter’s operation:

The initial counter we previously made takes in a clock and reset signal. When the counter is enabled, it will increment
the 8-bit count value on every clock cycle. When reset is activated, the counter value will reset to the initial count
value.

This more advanced counter will have both a AXI master and a AXI slave when packaged. The slave will take in
values/commands and pass them to the master. The master will then take these commands and instantiate them into
memory.

In order for the DUT to obtain and send values to/from memory, it is necessary to create some inter-
mediate variables. For example, when the initial count value is read in from memory, we will refer to
this as initial_count_value_i in the top file, initial_count_value_in in the slave file, and
initial_count_value_out in the master file.

When reading in a value from memory, it obtains data from the rdata bus. This means that the data must already be
on the rdata bus for it to be implemented. For example, when you first want to use the counter, you need to send a
9-bit value directly to BRAM address 204. You would then write to initiate the DUT to perform a read transaction so
it will read from BRAM and the data will be loaded onto rdata, then you can enable the counter.

The value that is read will be 32 bits in this example. However the only bits that are important to this counter are the
lower 9 bits ([8:0]). The last 8 bits ([7:0]) are the initial count value and the 9th bit ([8]) is the increment or decrement
mode. Increment is low active.

In this specific example, I made the address editor BRAM set to addr 0 and the DUT to addr 4000_0000. In addition
when I edited the custom IP, I set a slave address offset to address 200. This means that when I initiate the counter to
write to BRAM, even though the BRAM is at 0000_0000, the value will be written to addr 200 because of this offset.
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Fig. 1: Block Diagram of the Descriptor Counter
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13.2 Editing the Descriptor Counter IP

To edit the counter IP, we will directly edit the top file.

Important: If you wish to download the top file directly, go here.

1. Add port output port [7:0] count_out.

2. Comment out line port for master input wire m00_axi_init_axi_txn because we want this to be con-
trolled manually from an external port by user.

3. Before the slave instantiation, add the following wires. These are necessary because they are used in the instantiation
below so we need to create them before using them.

//create wires for instantiation below
wire m00_axi_init_axi_txn;
wire [7:0] count_out_i;
wire [7:0] initial_count_value_i;
wire m00_axi_init_read_txn;

4. In the slave instantiation insert the following:

.init_txn_read(m00_axi_init_read_txn),

.init_txn(m00_axi_init_axi_txn),

.count_out_i(count_out_i),

.initial_count_value_in(initial_count_value_i) //connect initial_count_value from
→˓Master output to Slave input

5. In the master instantiation, add the following lines:

.init_axi_txn_read(m00_axi_init_read_txn),

.count_out_i(count_out_i),

.count_out(count_out),

.initial_count_value_out(initial_count_value_i) //connect initial_count_value from
→˓Master output to Slave input

Slave File:

Important: If you wish to download the top file directly, go here.

1. Add the following user ports:

output wire[7:0] count_out_i,
output wire init_txn,
output wire init_txn_read, //make it an external port
input wire[7:0] initial_count_value_in, //initial count value sent from rdata

2. Add the user logic at the bottom of this file. In this example we are instantiating a counter as follows:

counter DUT(
.aclk (S_AXI_ACLK),
.enable (slv_reg0[0]), //set bit 0 of slv_reg0 to enable
.aresetn (S_AXI_ARESETN), //reset as axi slave reset
.inc_dec (slv_reg0[1]), //set bit 1 of slv reg0 as inc/dec setting
.start_value (initial_count_value_in), //slv_reg1 bits 7-0 to store start

→˓value (continues on next page)
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(continued from previous page)

.count_out (count_out_i) //count value
);

assign init_txn = slv_reg2[0];
assign init_txn_read =slv_reg2[1];

Master File:

Important: If you wish to download the top file directly, go here.

1. Insert the following ports:

input wire [7:0] count_out_i,//intermediate count value
output wire [7:0] count_out,
input wire init_axi_txn_read, //signal to initiate a read
output wire[7:0] initial_count_value_out, // output signal for initial counter value

2. Customize the master file to work as desired. In this case we changed the finite state machine and created an initiate
read txn that will operate separate from initiating a write txn. The code is below and the changes made are highlighted:

`timescale 1 ns / 1 ps
module myip_counter_master_read_v1_0_M00_AXI #
(

// Users to add parameters here

// User parameters ends
// Do not modify the parameters beyond this line

// The master will start generating data from the C_M_START_DATA_VALUE value
parameter C_M_START_DATA_VALUE = 32'h00000000,
// The master requires a target slave base address.
// The master will initiate read and write transactions on the slave with base

→˓address specified here as a parameter.
parameter C_M_TARGET_SLAVE_BASE_ADDR = :guilabel:`32'h00000200`,

// Width of M_AXI address bus.
// The master generates the read and write addresses of width specified as C_M_

→˓AXI_ADDR_WIDTH.
parameter integer C_M_AXI_ADDR_WIDTH = 32,
// Width of M_AXI data bus.
// The master issues write data and accept read data where the width of the data

→˓bus is C_M_AXI_DATA_WIDTH
parameter integer C_M_AXI_DATA_WIDTH = 32,
// Transaction number is the number of write
// and read transactions the master will perform as a part of this example memory

→˓test.
parameter integer C_M_TRANSACTIONS_NUM = 4
)
(
// Users to add ports here
:guilabel:`input wire [7:0] count_out_i,//intermediate count value
output wire [7:0] count_out,
input wire init_axi_txn_read, //signal to initiate a read
output wire[7:0] initial_count_value_out, // output signal for initial counter

→˓value`

(continues on next page)
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// User ports ends
// Do not modify the ports beyond this line

// Initiate AXI transactions
:guilabel:`input wire INIT_AXI_TXN,`
// Asserts when ERROR is detected
output reg ERROR,
// Asserts when AXI transactions is complete
output wire TXN_DONE,
// AXI clock signal
input wire M_AXI_ACLK,
// AXI active low reset signal
input wire M_AXI_ARESETN,
// Master Interface Write Address Channel ports. Write address (issued by master)
output wire [C_M_AXI_ADDR_WIDTH-1 : 0] M_AXI_AWADDR,
// Write channel Protection type.
// This signal indicates the privilege and security level of the transaction,
// and whether the transaction is a data access or an instruction access.
output wire [2 : 0] M_AXI_AWPROT,
// Write address valid.
// This signal indicates that the master signaling valid write address and

→˓control information.
output wire M_AXI_AWVALID,
// Write address ready.
// This signal indicates that the slave is ready to accept an address and

→˓associated control signals.
input wire M_AXI_AWREADY,
// Master Interface Write Data Channel ports. Write data (issued by master)
output wire [C_M_AXI_DATA_WIDTH-1 : 0] M_AXI_WDATA,
// Write strobes.
// This signal indicates which byte lanes hold valid data.
// There is one write strobe bit for each eight bits of the write data bus.
output wire [C_M_AXI_DATA_WIDTH/8-1 : 0] M_AXI_WSTRB,
// Write valid. This signal indicates that valid write data and strobes are

→˓available.
output wire M_AXI_WVALID,
// Write ready. This signal indicates that the slave can accept the write data.
input wire M_AXI_WREADY,
// Master Interface Write Response Channel ports.
// This signal indicates the status of the write transaction.
input wire [1 : 0] M_AXI_BRESP,
// Write response valid.
// This signal indicates that the channel is signaling a valid write response
input wire M_AXI_BVALID,
// Response ready. This signal indicates that the master can accept a write

→˓response.
output wire M_AXI_BREADY,
// Master Interface Read Address Channel ports. Read address (issued by master)
output wire [C_M_AXI_ADDR_WIDTH-1 : 0] M_AXI_ARADDR,
// Protection type.
// This signal indicates the privilege and security level of the transaction,
// and whether the transaction is a data access or an instruction access.

output wire [2 : 0] M_AXI_ARPROT,
// Read address valid.
// This signal indicates that the channel is signaling valid read address and

→˓control information.
output wire M_AXI_ARVALID,

(continues on next page)
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(continued from previous page)

// Read address ready.
// This signal indicates that the slave is ready to accept an address and

→˓associated control signals.
input wire M_AXI_ARREADY,
// Master Interface Read Data Channel ports. Read data (issued by slave)
input wire [C_M_AXI_DATA_WIDTH-1 : 0] M_AXI_RDATA,
// Read response. This signal indicates the status of the read transfer.
input wire [1 : 0] M_AXI_RRESP,
// Read valid. This signal indicates that the channel is signaling the required

→˓read data.
input wire M_AXI_RVALID,
// Read ready. This signal indicates that the master can accept the read data and

→˓response information.
output wire M_AXI_RREADY

);
:guilabel:`assign initial_count_value_out = M_AXI_RDATA[7:0];`

// function called clogb2 that returns an integer which has the
// value of the ceiling of the log base 2

// function called clogb2 that returns an integer which has the
// value of the ceiling of the log base 2

function integer clogb2 (input integer bit_depth);
begin

for(clogb2=0; bit_depth>0; clogb2=clogb2+1)
bit_depth = bit_depth >> 1;

end
endfunction

// TRANS_NUM_BITS is the width of the index counter for
// number of write or read transaction.
localparam integer TRANS_NUM_BITS = clogb2(C_M_TRANSACTIONS_NUM-1);

// Example State machine to initialize counter, initialize write transactions,
// initialize read transactions and comparison of read data with the
// written data words.
parameter [1:0] IDLE = 2'b00, // This state initiates AXI4Lite transaction

// after the state machine changes state to INIT_WRITE
// when there is 0 to 1 transition on INIT_AXI_TXN

INIT_WRITE = 2'b01, // This state initializes write transaction,
// once writes are done, the state machine
// changes state to INIT_READ

INIT_READ = 2'b10, // This state initializes read transaction
// once reads are done, the state machine
// changes state to INIT_COMPARE

INIT_COMPARE = 2'b11; // This state issues the status of comparison
// of the written data with the read data

reg [1:0] mst_exec_state;

// AXI4LITE signals
//write address valid
reg axi_awvalid;

(continues on next page)
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//write data valid
reg axi_wvalid;
//read address valid
reg axi_arvalid;
//read data acceptance
reg axi_rready;
//write response acceptance
reg axi_bready;
//write address
reg [C_M_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
//write data
reg [C_M_AXI_DATA_WIDTH-1 : 0] axi_wdata;
//read addresss
reg [C_M_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
//Asserts when there is a write response error
wire write_resp_error;
//Asserts when there is a read response error
wire read_resp_error;
//A pulse to initiate a write transaction
reg start_single_write;
//A pulse to initiate a read transaction
reg start_single_read;
//Asserts when a single beat write transaction is issued and remains asserted

→˓till the completion of write trasaction.
reg write_issued;
//Asserts when a single beat read transaction is issued and remains asserted till

→˓the completion of read trasaction.
reg read_issued;
//flag that marks the completion of write trasactions. The number of write

→˓transaction is user selected by the parameter C_M_TRANSACTIONS_NUM.
reg writes_done;
//flag that marks the completion of read trasactions. The number of read

→˓transaction is user selected by the parameter C_M_TRANSACTIONS_NUM
reg reads_done;
//The error register is asserted when any of the write response error, read

→˓response error or the data mismatch flags are asserted.
reg error_reg;
//index counter to track the number of write transaction issued
reg [TRANS_NUM_BITS : 0] write_index;
//index counter to track the number of read transaction issued
reg [TRANS_NUM_BITS : 0] read_index;
//Expected read data used to compare with the read data.
reg [C_M_AXI_DATA_WIDTH-1 : 0] expected_rdata;
//Flag marks the completion of comparison of the read data with the expected read

→˓data
reg compare_done;
//This flag is asserted when there is a mismatch of the read data with the

→˓expected read data.
reg read_mismatch;
//Flag is asserted when the write index reaches the last write transction number
reg last_write;
//Flag is asserted when the read index reaches the last read transction number
reg last_read;
reg init_txn_ff;
reg init_txn_ff2;
reg init_txn_edge;
wire init_txn_pulse;

(continues on next page)
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//added registers for init_txn_read
:guilabel:`reg init_txn_ff_read;
reg init_txn_ff2_read;`

//set count out as count out i
:guilabel:`assign count_out=count_out_i;`

// I/O Connections assignments

//Adding the offset address to the base addr of the slave
assign M_AXI_AWADDR = C_M_TARGET_SLAVE_BASE_ADDR + axi_awaddr;
//AXI 4 write data
assign M_AXI_WDATA = axi_wdata;
assign M_AXI_AWPROT = 3'b000;
assign M_AXI_AWVALID = axi_awvalid;
//Write Data(W)
assign M_AXI_WVALID = axi_wvalid;
//Set all byte strobes in this example
assign M_AXI_WSTRB = 4'b1111;
//Write Response (B)
assign M_AXI_BREADY = axi_bready;
//Read Address (AR)
assign M_AXI_ARADDR = C_M_TARGET_SLAVE_BASE_ADDR + axi_araddr;
assign M_AXI_ARVALID = axi_arvalid;
assign M_AXI_ARPROT = 3'b001;
//Read and Read Response (R)
assign M_AXI_RREADY = axi_rready;
//Example design I/O
assign TXN_DONE = compare_done;
assign init_txn_pulse = (!init_txn_ff2) && init_txn_ff;

:guilabel:`assign init_txn_pulse_read = (!init_txn_ff2_read) && init_txn_ff_read;`

//Generate a pulse to initiate AXI transaction.
always @(posedge M_AXI_ACLK)
begin

// Initiates AXI transaction delay
if (M_AXI_ARESETN == 0 )
begin

init_txn_ff <= 1'b0;
init_txn_ff2 <= 1'b0;
:guilabel:`init_txn_ff_read <= 1'b0; //do the same thing for read txn
init_txn_ff2_read<=1'b0;`
end

else
begin

init_txn_ff <= INIT_AXI_TXN;
init_txn_ff2 <= init_txn_ff;
:guilabel:`init_txn_ff_read <= init_axi_txn_read;
init_txn_ff2_read <= init_txn_ff_read;`
end

end

(continues on next page)
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//--------------------
//Write Address Channel
//--------------------

// The purpose of the write address channel is to request the address and
// command information for the entire transaction. It is a single beat
// of information.

// Note for this example the axi_awvalid/axi_wvalid are asserted at the same
// time, and then each is deasserted independent from each other.
// This is a lower-performance, but simplier control scheme.

// AXI VALID signals must be held active until accepted by the partner.

// A data transfer is accepted by the slave when a master has
// VALID data and the slave acknoledges it is also READY. While the master
// is allowed to generated multiple, back-to-back requests by not
// deasserting VALID, this design will add rest cycle for
// simplicity.

// Since only one outstanding transaction is issued by the user design,
// there will not be a collision between a new request and an accepted
// request on the same clock cycle.

always @(posedge M_AXI_ACLK)
begin

//Only VALID signals must be deasserted during reset per AXI spec
//Consider inverting then registering active-low reset for higher fmax

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

axi_awvalid <= 1'b0;
end
//Signal a new address/data command is available by user logic
else
begin

if (start_single_write)
begin

axi_awvalid <= 1'b1;
end

//Address accepted by interconnect/slave (issue of M_AXI_AWREADY by slave)
else if (M_AXI_AWREADY && axi_awvalid)
begin

axi_awvalid <= 1'b0;
end

end
end

// start_single_write triggers a new write
// transaction. write_index is a counter to
// keep track with number of write transaction
// issued/initiated
always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

write_index <= 0;
(continues on next page)
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end
// Signals a new write address/ write data is
// available by user logic
else if (start_single_write)
begin

write_index <= write_index + 1;
end

end

//--------------------
//Write Data Channel
//--------------------

//The write data channel is for transfering the actual data.
//The data generation is speific to the example design, and
//so only the WVALID/WREADY handshake is shown here

always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

axi_wvalid <= 1'b0;
end
//Signal a new address/data command is available by user logic
else if (start_single_write)
begin

axi_wvalid <= 1'b1;
end
//Data accepted by interconnect/slave (issue of M_AXI_WREADY by slave)
else if (M_AXI_WREADY && axi_wvalid)
begin

axi_wvalid <= 1'b0;
end

end

//----------------------------
//Write Response (B) Channel
//----------------------------

//The write response channel provides feedback that the write has committed
//to memory. BREADY will occur after both the data and the write address
//has arrived and been accepted by the slave, and can guarantee that no
//other accesses launched afterwards will be able to be reordered before it.

//The BRESP bit [1] is used indicate any errors from the interconnect or
//slave for the entire write burst. This example will capture the error.

//While not necessary per spec, it is advisable to reset READY signals in
//case of differing reset latencies between master/slave.

always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

axi_bready <= 1'b0;
(continues on next page)
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end
// accept/acknowledge bresp with axi_bready by the master
// when M_AXI_BVALID is asserted by slave
else if (M_AXI_BVALID && ~axi_bready)
begin

axi_bready <= 1'b1;
end
// deassert after one clock cycle
else if (axi_bready)
begin

axi_bready <= 1'b0;
end
// retain the previous value
else
axi_bready <= axi_bready;

end

//Flag write errors
assign write_resp_error = (axi_bready & M_AXI_BVALID & M_AXI_BRESP[1]);

//----------------------------
//Read Address Channel
//----------------------------

//start_single_read triggers a new read transaction. read_index is a counter to
//keep track with number of read transaction issued/initiated

always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

read_index <= 0;
end
// Signals a new read address is
// available by user logic
else if (start_single_read)
begin

read_index <= read_index + 1;
end

end

// A new axi_arvalid is asserted when there is a valid read address
// available by the master. start_single_read triggers a new read
// transaction
always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

axi_arvalid <= 1'b0;
end
//Signal a new read address command is available by user logic
else if (start_single_read)
begin

axi_arvalid <= 1'b1;
end
//RAddress accepted by interconnect/slave (issue of M_AXI_ARREADY by slave)

(continues on next page)
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else if (M_AXI_ARREADY && axi_arvalid)
begin

axi_arvalid <= 1'b0;
end
// retain the previous value

end

//--------------------------------
//Read Data (and Response) Channel
//--------------------------------

//The Read Data channel returns the results of the read request
//The master will accept the read data by asserting axi_rready
//when there is a valid read data available.
//While not necessary per spec, it is advisable to reset READY signals in
//case of differing reset latencies between master/slave.

always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

axi_rready <= 1'b0;
end
// accept/acknowledge rdata/rresp with axi_rready by the master
// when M_AXI_RVALID is asserted by slave
else if (M_AXI_RVALID && ~axi_rready)
begin

axi_rready <= 1'b1;
end
// deassert after one clock cycle
else if (axi_rready)
begin

axi_rready <= 1'b0;
end
// retain the previous value

end

//Flag write errors
assign read_resp_error = (axi_rready & M_AXI_RVALID & M_AXI_RRESP[1]);

//--------------------------------
//User Logic
//--------------------------------

//Address/Data Stimulus

//Address/data pairs for this example. The read and write values should
//match.
//Modify these as desired for different address patterns.

//Write Addresses
always @(posedge M_AXI_ACLK)

begin
if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

(continues on next page)
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axi_awaddr <= 0;
end
// Signals a new write address/ write data is
// available by user logic
else if (M_AXI_AWREADY && axi_awvalid)
begin

:guilabel:`axi_awaddr <= axi_awaddr;//dont increment write address +
→˓32'h00000004; `

end
end

// Write data generation
always @(posedge M_AXI_ACLK)

begin
if (:guilabel:`M_AXI_ARESETN == 0`)
begin

axi_wdata <= C_M_START_DATA_VALUE;
end
// Signals a new write address/ write data is
// available by user logic

else if (:guilabel:`init_txn_pulse == 1'b1`) //ORIGINALLY WAS M_AXI_WREADY && axi_
→˓wvalid

begin
:guilabel:`axi_wdata <= count_out_i`; //send count out intermediiate

→˓value
end
end

//Read Addresses
always @(posedge M_AXI_ACLK)

begin
if (:guilabel:`M_AXI_ARESETN == 0`) //|| init_txn_pulse == 1'b1) //

→˓put one clk cycle ahead
begin

:guilabel:`axi_araddr <= 32'h0000_0000;` //always reading from
→˓address 200

end
// Signals a new write address/ write data is
// available by user logic
else if (:guilabel:`init_txn_pulse_read==1'b1`) //originally was: (M_AXI_

→˓ARREADY && axi_arvalid)
begin

:guilabel:`axi_araddr <= axi_araddr;`//do not increment the read
→˓address + 32'h00000004;

end
end

always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
begin

expected_rdata <= C_M_START_DATA_VALUE;
end
// Signals a new write address/ write data is

(continues on next page)
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// available by user logic
else if (M_AXI_RVALID && axi_rready)
begin

expected_rdata <= C_M_START_DATA_VALUE + read_index;
end

end
//implement master command interface state machine
always @ ( posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 1'b0)
begin
// reset condition
// All the signals are assigned default values under reset condition

mst_exec_state <= IDLE;
start_single_write <= 1'b0;
write_issued <= 1'b0;
start_single_read <= 1'b0;
read_issued <= 1'b0;
compare_done <= 1'b0;
ERROR <= 1'b0;

end
else
begin
// state transition

case (mst_exec_state)

IDLE:
// This state is responsible to initiate
// AXI transaction when init_txn_pulse is asserted

:guilabel:` if ( init_txn_pulse == 1'b1 )
begin

mst_exec_state <= INIT_WRITE;
ERROR <= 1'b0;
compare_done <= 1'b0;`

end
:guilabel:`else if (init_txn_pulse_read ==1'b1 )
begin
mst_exec_state <=INIT_READ;
end `
else
begin

mst_exec_state <= IDLE;
end

INIT_WRITE:
// This state is responsible to issue start_single_write pulse to
// initiate a write transaction. Write transactions will be
// issued until last_write signal is asserted.
// write controller
if (writes_done)
begin

mst_exec_state <= :guilabel:`IDLE;`//
end
else
begin

mst_exec_state <= INIT_WRITE;

(continues on next page)

136 Chapter 13. Creating an Advanced Custom AXI Descriptor IP



fpgaemu, Release 0.1

(continued from previous page)

if (~axi_awvalid && ~axi_wvalid && ~M_AXI_BVALID && ~last_write && ~start_single_
→˓write && ~write_issued)

begin
start_single_write <= 1'b1;
write_issued <= 1'b1;
end

else if (axi_bready)
begin
write_issued <= 1'b0;
end

else
begin
start_single_write <= 1'b0; //Negate to generate a pulse
end

end

INIT_READ:
// This state is responsible to issue start_single_read pulse to
// initiate a read transaction. Read transactions will be
// issued until last_read signal is asserted.
// read controller
if (reads_done)
begin

mst_exec_state <= :guilabel:`IDLE`;
end
else
begin

mst_exec_state <= INIT_READ;

if (~axi_arvalid && ~M_AXI_RVALID && ~last_read && ~start_single_
→˓read && ~read_issued)

begin
start_single_read <= 1'b1;
read_issued <= 1'b1;

end
else if (axi_rready)
begin

read_issued <= 1'b0;
end
else
begin

start_single_read <= 1'b0; //Negate to generate a pulse
end

end

INIT_COMPARE:
begin

// This state is responsible to issue the state of comparison
// of written data with the read data. If no error flags are set,
// compare_done signal will be asseted to indicate success.
ERROR <= error_reg;
mst_exec_state <= IDLE;
compare_done <= 1'b1;

end
default :

begin
(continues on next page)
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mst_exec_state <= IDLE;
end

endcase
end

end //MASTER_EXECUTION_PROC

//Terminal write count

always @(posedge M_AXI_ACLK)
begin

if (:guilabel:`M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1`)
last_write <= 1'b0;

//The last write should be associated with a write address ready response
else if ((write_index == C_M_TRANSACTIONS_NUM) && M_AXI_AWREADY)
last_write <= 1'b1;
else
last_write <= last_write;

end

//Check for last write completion.

//This logic is to qualify the last write count with the final write
//response. This demonstrates how to confirm that a write has been
//committed.

always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
writes_done <= 1'b0;

//The writes_done should be associated with a bready response
else if (last_write && M_AXI_BVALID && axi_bready)
writes_done <= 1'b1;
else
writes_done <= writes_done;

end

//------------------
//Read example
//------------------

//Terminal Read Count

always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
last_read <= 1'b0;

//The last read should be associated with a read address ready response
else if ((read_index == C_M_TRANSACTIONS_NUM) && (M_AXI_ARREADY) )
last_read <= 1'b1;
else
last_read <= last_read;

end

(continues on next page)
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/*
Check for last read completion.

This logic is to qualify the last read count with the final read
response/data.

*/
always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
reads_done <= 1'b0;

//The reads_done should be associated with a read ready response
else if (last_read && M_AXI_RVALID && axi_rready)
reads_done <= 1'b1;
else
reads_done <= reads_done;
end

//-----------------------------
//Example design error register
//-----------------------------

//Data Comparison
always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
read_mismatch <= 1'b0;

//The read data when available (on axi_rready) is compared with the expected
→˓data

else if ((M_AXI_RVALID && axi_rready) && (M_AXI_RDATA != expected_rdata))
read_mismatch <= 1'b1;
else
read_mismatch <= read_mismatch;

end

// Register and hold any data mismatches, or read/write interface errors
always @(posedge M_AXI_ACLK)
begin

if (M_AXI_ARESETN == 0 || :guilabel:`init_txn_pulse == 1'b1`)
error_reg <= 1'b0;

//Capture any error types
else if (read_mismatch || write_resp_error || read_resp_error)
error_reg <= 1'b1;
else
error_reg <= error_reg;

end
// Add user logic here

// User logic ends

endmodule
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13.3 Creating the Master DUT Simulation Environment

1. Package the custom IP and import it into the project. This was previously explained with the simple counter, but
for a refresher refer to adding a custom IP to a design.

2. Create a block diagram with an AXI VIP, two AXI Smart Connects, AXI BRAM Controller, and Clock Memory
Generator connected as shown.

Fig. 2: Block Diagram Setup

3. Navigate to the address editor and assign addresses to the custom DUT and the BRAM. In this example we assigned
the BRAM to address 0 and the DUT to 0x4000_0000.

Fig. 3: Address Editor

4. Go back to the block diagram and right-click on a blank spot in the design. Select Validate Design.

5. The next step is to create a wrapper file which turns the block diagram into HDL. To do this go to the Sources and
right-click on the source for your block diagram (the default name is design_1 or something similar). Select Create
HDL Wrapper and then Let Vivado manage wrapper and auto-update.

6. The next step is to create a testbench to ensure the custom AXI IP works as intended.

13.4 Testbench for a Master Custom DUT

The testbench for this advanced master counter DUT is similar to the testbench of the simpler DUT we previously
created and follows all of the core concepts. The difference is that this advanced master DUT reads in the start value
and counting mode from memory. It is important to remember this so you can first place these values directly into
memory, and then send the DUT the command to read these values in before enabling the counter. Another thing
important to keep straight are the addresses for writing to the memory directly(0000_0000 in this example with an
offset of 200), and the address for writing to the DUT directly (4000_0000 in this example).
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Follow the steps stated for creating a testbench for a simple counter. Make the appropriate address changes and update
the logic to test all aspects of the advanced descriptor DUT.

A brief description of my testbench logic is stated below, the parentheses include the address that the command is sent
to:

• Write the start value and counting mode directly into memory (addr:0000_0204)

• Initiate the counter to read the start value into the DUT (addr: 4000_0008)

• Enable the counter (addr:4000_0000)

• After a delay, initiate the DUT to send the current count out value to memory(4000_0008)

• Disable counter (4000_0000)

• Read count value that was sent previously directly from memory (0000_0200)

• Write a new start value into memory, this time decrement mode (0000_0204)

• Initiate the counter to read in the start value into the DUT (4000_0008)

• Enable the counter

• After a delay, disable the counter

Important: If you want to download the testbench file directly, go here.

13.5 Simulating the Master Custom DUT

This section is based on the Interpreting Simulation Waveforms For a Custom DUT earlier section. Please refer to that
documentation for details.

1. Run the Behavioral Simulation

2. The waveform should have automatically opened. In the left column, there are some signals we want to add
to the waveform. The first signal is axi_vip_0, this will show the reads and writes that we initiate from the
axi_vip in our testbench. In order to add a signal to the waveform, right click on the desired signal and choose
Add to waveform. The next group of signals necessary to add to the waveform are for our custom DUT, in
this example labeled mycounter_descriptor. This will show the writes written to the counter from the
AXI VIP, as well as the commands the DUT performs to memory. And the last group of signals to add to the
waveform is axi_bram_ctrl_0. This will allow you to see the data stored in memory.

3. Now that we have added the necessary waveforms, in order to see the simulation run through our testbench properly
we need to simulate for 3ms. To do this, make sure that the top toolbar is set to at least 3ms and then click the button
highlighted in the photo below.
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Fig. 4: Add Desired Signals to Waveform

Fig. 5: 3ms Simulation time
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CHAPTER

FOURTEEN

BUILDING A BASIC SIMULATION ENVIRONMENT (VC707)

14.1 Generating PCIe and MIG Example Designs

Now that we have experience generating and manipulating the PCIe and MIG example designs, we can start putting the
pieces together - that is, building the basic infrastructure behind our FPGA emulation environment. The infrastructure
will begin modifying Xilinx’s PCIe example design, as this will allow us to perform reads and writes to both DDR
memory and a replaceable Device Under Test (DUT), as well as other on-board peripherals. This can be accomplished
through the use of an AXI SmartConnect, or what is known as a a “NoC” in industry. You can read more about the
SmartConnect IP and the AXI protocol here. We will give the DDR memory and the Device Under Test different
offset addresses in the AXI memory space, and then we can decide which device the PCIe will read or write to by
specifying the address of the transaction.

Note: For a refresher on generating the MIG example design or targeting the VC707 board, please see this MIG
overview.

First, we will want to create a new Vivado project and select your preferred FPGA or board. For this article, we will
be using the Xilinx VC707 board as our target. Then, open up a new block diagram. Under the Board tab, select the
DDR3 SDRAM option.

This will insert a MIG into the block diagram, which we can edit by double clicking on the IP. If you are not using
a board, generate a MIG 7 Series or equivalent IP using Xilinx’s IP integrator. For the MIG 7 Series, modify the
following fields:

Important: Unless mentioned otherwise, leave all values default.

• Desired Clock Period → 2500ps (400MHz)

• Data Width → 64 bit (default)

• AXI Data Width → 64 bit

• Input Clock Period → 5000ps (200MHz)

• Deselect any Additional Clocks

• Addressing → Bank/Row/Column

• System Clock → Differential

• Reference Clock → Use System Clock

• Reset → ACTIVE LOW

• Uncheck the Box for DCI Cascade
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• Select Fixed Pinout, then select Validate for the given pinout

• In the System Signals section:

– Leave sys_clk_p and sys_clk_n to their default pins

– Assign sys_rst to AR40 (push button)

– Assign init_calib_complete to AM39 (LED)

Of course, the pinout will differ depending on the board or FPGA chosen. For more infomation on the VC707 board
pinout, see this documentation from Xilinx here: UG885.

Once these modifications have been made, the MIG IP will regenerate. Then, generate the IP example design by
right-clicking on the IP block and selecting Generate IP Example Design. As before, this will open up a project in
Vivado with the MIG IP example design, which we can set aside for the moment.

Now, we will also need to generate the IP example design for the AXI Memory Mapped to PCI Express core.

Note: For a refresher on generating the AXI Memory Mapped to PCI Express example design, please see this PCIe
overview.

Click on the + icon to add IP to the block design, then select AXI Memory Mapped to PCI Express. Make the following
changes to the core:

Important: Unless specified, please leave everything as default.

• Reference Clock Frequency → 100MHz

• Check the box to enable External PIPE Interface (this helps to speed up the simulation time)

• Lane Width → X8
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Fig. 1: PCIE:Basics Customization
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• Link Speed → 2.5GT/s

• In the PCIE BARs section, ensure only 1 BAR is enabled and that it is 16KB in size with offset at address
0x00000000.

Fig. 2: PCIE:BARS Customization

Once this core has been generated, generate an example design for this IP as well. Now that the example designs have
been generated for both the MIG and the PCIE IPs, we are ready to move onto the next section.

14.2 Creating the Block Diagram

Like we did in the section 2.4 of the AXI MM to PCIe IP Overview, the first step that we will do is comment out the
BRAM instantiation from the top file of the PCIE example design (xilinx_axi_pcie_ep.v). However, instead
of inserting a MIG into its place, we are instead going to create a new block diagram. In the end, this is what we want
the block diagram to look like:

In order to create this block diagram, follow these instructions:

1. Add an AXI Smartconnect IP to the block design with two AXI Master outputs and one AXI Slave input. Make
sure that the data width is set to at least 32 bits, and make sure that there are two clock inputs.

2. Make the S00_AXI, aclk, and aresetn ports external, as these will connect back into our PCIe core.
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Fig. 3: Combined block diagram

3. Add a MIG 7 Series IP to the block design from the Board tab, and make sure to customize it in the EXACT
SAME way as the MIG you customized in the previous section. This will ensure that the example design we
generated will have the correct parameters associated with it.

4. Make the SYS_CLK, sys_rst, aresetn, DDR3, ui_clk_sync_rst, ui_clk_, mmcm_locked, and
init_calib_complete pins external, as these will be handled by our MIG example design. The SYS_CLK
and DDR3 pins should already be external, but to keep the same naming convention, delete the previous external
connections, and then right-click to make them external again.

5. Add an AXI BRAM controller IP to the block design, and make sure to set the interface type to AXILite and
Data Width to 32 bits. This BRAM represents the replaceable DUT that we should be able to exchange with a
custom design later.

6. Connect the M00_AXI port from the Smartconnect to the S_AXI port on the MIG, and connect the M01_AXI
port from the Smartconnect to the S_AXI port on the BRAM controller.

7. Connect the ui_clk from the MIG to the aclk1 port on the Smartconnect and the s_axi_aclk port on the
BRAM controller. This way, the example DUT will be in the same clock domain as the MIG.

8. Connect the s_axi_aresetn port on the BRAM controller to the external aresetn signal going into the MIG.
This way, the example DUT reset will be synchronous with the MIG reset.

9. Finally, there should be an option at the top of the screen to Run Connection Automation, and doing this should
insert the Block Memory Generator, which will be attached to the BRAM controller.

Now that the block diagram has been created, we will need to use the address editor to assign the MIG and BRAM
locations in the AXI memory space. Click on the Address Editor tab, and edit the offset addresses as follows:

• MIG: size 8KB, range: 0x0000_0000 to 0x0000_1FFF

• BRAM: size 8KB, range: 0x2000_3FFF

If we click on the Address Map tab, then we can even see a layout of the memory mapping:

Since we configured the PCIe to have a 16KB BAR from address 0x0000_0000 to 0x0000_3FFF, we should now be
able to access both of our AXI slaves from within the PCIE memory space.

Finally, we can go ahead and right-click on our block diagram and select validate design. There might be a warning
that the resets are not synchronous - this is because we have not connected the PCIe IP to the design yet, so we can
ignore this for now. Once Validation is successful, we will need to right-click on the block design under the Sources
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Fig. 4: Address Editor for MIG and BRAM

Fig. 5: Address Map for MIG and BRAM
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menu, and select Create HDL Wrapper. Just like before, this will generate an RTL wrapper file for this block diagram,
which we can instantiate into our PCIe example design in the next section.

14.3 Connecting it All Together

Similar to section 2.4, we will now need to instantiate our block diagram into the PCIe example design. Since this
process has several steps involved with it, we will include the design, constraints, and simulation top file here. This
next section will be a brief overview of the steps needed to combine the PCIe example design, the MIG example
design, and the block diagram. This has already been done for you in this case (just download the files), but it is highly
recommended that you follow along and try to understand what modifications were made in each step.

Important: You can download our design top file here.

Important: You can download our constraints file here.

Important: You can download our simulation top file here.

First, we will need to correctly instantiate the block design wrapper file into the PCIe example top file. In order to do
this, we can locate where we commented out the old BRAM instantiation, and instead instantiate the block design.

Then, we will need to copy all of the relevant parameters, wires, functions, inputs, and outputs from the MIG example
design top file into the PCIe example design top file. For more a deeper explanation on this, see section 2.4 on the
AXI MM to PCIe IP Overview tab.

Note: The following fields had to be changed because of already existing fields in the PCIe example design.

• Parameters: TCQ→ TCQ_MIG

• Inputs: sys_clk_n→ sys_clk_n_mig

• Outputs: sys_clk_p→ sys_clk_p_mig

Make sure to copy over the statement that synchronizes the MIG reset:

Then, we will need to copy over the top-level constraints from the MIG example design and paste them into the top-
level constraints file for the PCIe example design. The top level constraints for each project can be found under the
Constraints tab in the Sources menu.

Once the top file and the constraints file have been modified, then we can run synthesis and implementation to ensure
that there are no errors in our design. Refer to the TCL console and the Xilinx forums for help with debugging, as
every board/FPGA has different parameters, or cross reference your design and constraints top file with the provided
example files above.

Once synthesis and implementation are complete, your schematic should look something like this. Once synthesis and
implementation are complete, we can now move on to the next section.
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Fig. 6: Instantiating the Block Diagram (1)
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Fig. 7: Instantiating the Block Diagram (2)

Fig. 8: Copy over the MIG Reset Statement
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Fig. 9: Copy over top-level constraints from MIG Example Design
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Fig. 10: Example schematic of infrastructure Block Diagram (BD)

14.4 Modifying and Running the Simulation

Just like the example in section 2.5 of the AXI MM to PCIE IP Overview, the first step to running
our simulation is to import the correct simulation files from the MIG example project (ddr3_model.sv,
ddr3_model_parameters.vh, and wiredly.v). For more information on how to import these files, please
reference that section. As an additional reference, these files have also been attached below.

Important: ddr3_model.sv file available here.

Important: ddr3_model_parameters.vh file available here.

Important: wiredly.v file available here.

Now, we will need to edit our simulation top file to accommodate the MIG and DDR3 memory model, as well as
include our block diagram from earlier. In this case, you can simply download the above files and import them into
your design, but it is again recommended that you read through and try to understand the modifications made below.

Some notes about the modifications made to the PCIe example design top file:

• Parameters changed:

– TCQ→ TCQ_MIG (duplicate name)

– ADDR_WIDTH→ ADDR_WIDTH_MIG (duplicate name)

– RESET_PERIOD = 100 (convert to nanoseconds)

• Wires/Regs changed:
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– sys_rst_n→ sys_rst_n_mig (duplicate name)

• Variables changed:

– In the memory model instantiation, the variable i had to be changed to s due to a duplicate name

Fig. 11: Changing variable ‘i’ to ‘s’ due to duplicate name

• MIG input system and reference clocks: - Due to timescale issue (MIG simulation top file is in picoseconds,
PCIe simulation top file is in nanoseconds),

We were forced to change the system and reference clocks to run at 250MHz instead of 200MHz
(4ns period instead of 5ns period). This in turn causes the MIG ui_clk to run at 125MHz instead of
100MHz. However, everything in the simulation should still run fine.

• Instantiations included:

– Top file from design sources

– DDR3 memory model

– Wire delay modules

• In order to determine when init_calib_complete goes HIGH for the MIG, a simple check that displays “MIG
Calibration Done” when this event occurs was added.

Now, if we were to click Run Behavioral Simulation, the standard PCIe example simulation would run, which would
simply perform a read and a write to address 0x0000_0010. For debugging purposes, it may be smart to try and
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Fig. 12: Change system and reference clock to 250MHz

Fig. 13: Finished MIG calibration
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run this simulation to make sure that everything is set up properly. However, we want to be able to read and write
our own data to our own specific addresses. In order to do this, we will need to edit the simulation header file
called sample_tests1.vh. This file can be located in the Verilog Header folder within Simulation Sources. As a
reference, we have also attached our own sample_tests1.vh file below for you to download.

Important: You can download our custom simulation header file here.

Under the comment that says “MEM 32 SPACE” in the BAR Testing section, a 60us delay is included to allow for the
MIG to finish calibrating before attempting to read and write from it. The predefined tasks TSK_TX_BAR_WRITE
and TSK_TX_BAR_READ perform the custom reads and writes. The definitions of these tasks can be found in the
pci_exp_usrapp_tx.v file contained within the Root Port simulation model.

To test the MIG, the sample data 0xABCD_BEEF was written to address 0x0000_0010, which corresponds to
address 0x0000_00010 on the MIG. If the read data equals the written data, then the message MIG Test Passed will
appear in the TCL console.

Fig. 14: MIG Test Passed

In order to test the BRAM controller (aka the DUT), I sent the data 0x1234_4321 to address 0x0000_2000, which
should correspond to address 0x0000_0000 on the BRAM controller. If the read data equals the written data, then
the message “BRAM Test Passed” will appear in the TCL Console.

Now that we have built our simulation environment, we can go ahead and Run Behavioral Simulation.

Note: If the simulation fails to launch, the TCL console will direct you to the location of a log file that will provide
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Fig. 15: BRAM Custom Test

14.4. Modifying and Running the Simulation 157



fpgaemu, Release 0.1

more specific error-related information for debugging.

The simulation should automatically pause itself after 1 nanosecond, and this is a good time to add the desired wave-
form signals into the simulation window. This can be done by navigating to the Scope window, right clicking on the
signals you would like to see, and then clicking Add to Wave Window. I would personally recommend adding the sig-
nals from the XILINX_AXIPCIE_EP file, the axi_bram_ctrl_0 file, and the mig_7series_0 file as shown in the image
below.

Once we’ve added the correct signals, we can click on the green play button at the top left corner of the screen to
resume the simulation.

Note: If the simulation stops early (before 100us) due to a timeout error from one of the PCIE root port files, we can
go ahead and just click the green play button to force the simulation to resume anyways. If this becomes bothersome,
we can comment out the timeout error from occurring like this:

Finally, the simulation should conclude around 110 us, and if you see the following messages in the TCL console, then
the simulation was a success!

Additionally, we can view the AXI transactions in the simulation window. One important thing to notice is that the
PCIE sent a write transaction to address 0x0000_2000 for the BRAM test, but because of the address offset that
we specified for the BRAM controller back in the block diagram stage, the BRAM received this write request at
address 0x0000_0000. This is how we will be able to use the PCIE to read and write to multiple slave devices
simultaneously.

14.5 Checking Timing, Viewing Power Reports, Monitoring I/O Place-
ment:

After running through synthesis and implementation, Vivado provides us with several tools that we can use to monitor
important factors of our design such as timing, power, and I/O placement.

The first category that we can take a look at is the Timing section. In this Design Timing Summary, we can see
several aspects of our timing report, such as the total number of endpoints, worst negative slack, and most importantly,
whether our device meets timing or not. In this example, we can see that our device successfully meets all of the
timing requirements as shown in the figure below.

If we click on the Check Timing tab on the left side of the screen, it will show us a more detailed layout of the timing
summary

In this case, we can see that there are 4 total errors with our timing: 2 no_input_delays and 2
no_output_delays. If we click on those respective sections on the left side of the screen, we can see which
exact ports are afflicted by these errors. However, since all of the timing constraints are still met within the design, it
is alright to ignore these errors.

This is also the place where we would see if any clocks were not properly constrained. If this were the case, we would
usually see a large amount of errors under the no_clock category.

If any of these errors were preventing our design from meeting timing, we can use the Vivado Timing Constraints
Wizard to help us write clock constraints to fix these errors. In order to access the wizard, open up the implemented
design, click on the Tools menu at the very top of the screen, and then click on Timing→ Constraints Wizard.

Note: If you do decide to use the timing constraints wizard, it will automatically write the constraints for you
based on the clocks you need to define, and it will OVERWRITE any constraints that you already have in your
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Fig. 16: BRAM Scope
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Fig. 17: Comment out timeout error

Fig. 18: MIG Test Passed
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Fig. 19: BRAM Test Passed

Fig. 20: BRAM MIG Waveform
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Fig. 21: Timing Summary Met
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Fig. 22: Check Timing Summary
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target constraints file. Personally, I would recommend copying and pasting the text from your target constraints file
somewhere safe before running the wizard.

To check the Vivado Power Report for our design, click on the Power tab within the implemented design.

From here, we can see additional information relevant to the on-chip power required for implementation, as well as
the power distribution for each FPGA primitive used in order to build the design (clocks, PLLs, I/O, BRAM, etc.)

Fig. 23: Check Power Summary

In this case, we can see that the total on-chip power required is 4.512 Watts, which is broken down into the individual
FPGA components in the diagram to the right.

One other very handy tool that Vivado provides for us is the ability to view and modify the I/O planning of the design.
In order to access the I/O planning page, open up the implemented design, select the Layout menu at the very top of
the screen, and then select I/O Planning.

This should open up a new tab on the Implemented design called I/O Ports, and navigating through this tab allows
you to view all of the pin locations defined within your constraints, as well as their respective location within the
FPGA

Similar to the Timing Constraints Wizard, we can manually assign the input/output ports of our designs to any re-
spective package pin port, and the Vivado tool will write the constraints for us. However, it will also overwrite any
previously written constraints, so always make sure to copy and paste your top level constraints somewhere safe before
saving any edits.

Other things that we can do within this window include setting the I/O Std type and enabling/disabling pullup resistors.

164 Chapter 14. Building a Basic Simulation Environment (VC707)



fpgaemu, Release 0.1

Fig. 24: IO Pin Planning
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FIFTEEN

BUILDING AN EMULATION ENVIRONMENT (WITHOUT A BOARD)

Note: All pages are under construction as we work to finalize this project. Please be patient!

Important: This guide uses Vivado 2020.2, so while the software and IPs will change in the future, underlying
principles will remain the same.

Create a new project and select your project device. For this article, we will assume that no pre-existing board files will
be used, except for the MIG’s UCF constraint file. For example, we will use the Virtex-7 2000T FPGA for this design
(similar to the HTG-700 development board from HTG which both has DDR3 SoDIMM memory and 8x Gen.3 PCIe)
which at the moment does not have prepackaged board files in a standard Vivado installation. This design should also
work with Vivado’s WebPACK version (eg. you can use the Kintex-7 XCKU025 which is compatible with all IPs),
given you have access or are willing to write UCF and XDC constraints.

As such, we will not include any source files within this article, except our example AXI counter. We encourage you
to step through and generate the design yourself, as parameters will vary between FPGAs. We will, however, give
samples of our source code so that you can step through the process yourself.

Here is a companion video with the Virtex-7 2000T that can be used alongside this article for further clarification.

15.1 Project Start (Building the Block Diagram)

If you need a refresher on digital design and FPGAs, read this article first.

If this is your first Vivado project, make sure you download the Vivado Design Suite here. If you wish to follow this
tutorial with a Virtex-7 or equivalent FPGA and have access to a license, use Vivado’s License Manager to install the
license. Otherwise, download the WebPACK version for access to the Kintex-7 FPGAs.

Note: As of Vivado 2020.2, there is a bug where Vivado cannot create a project if there is a space in your Win-
dows/Linux username. Be careful if you try to use this or earlier versions.

Create a new RTL project and choose your project device. For this article, we will choose the xc7v000tflg1925-2
FPGA. After the project initializes, create a new block diagram (also referred to as a BD).

In your new BD, generate a DMA/Bridge Subsystem for PCI Express IP using the plus sign at the top of the BD
window. Each FPGA will require a different customization, but you can refer to our companion video for our example
configuration. After the IP has been generated, right click the IP block and select Open IP Example Design. . . ,
allowing Vivado to generate and manage everything. A new example design project will automatically open.
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Fig. 1: Opening the example design for XDMA IP
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Fig. 2: Source Directory of our new XDMA project

After the example XDMA project
opens, create a new block design in
this new project (you can close out of
the first project, as we will not use it
going forward). The current source di-
rectory should look similar to this:

In this BD, generate a AXI SmartCon-
nect, which we will use to control each
IP. You can read more about AXI and
the SmartConnect here. We generated
our SmartConnect with 2 Master and
3 Slave interfaces, 2 Clock Inputs, and
an ARESETN input. The PCIe Master
has 3 BARs, so there are 3 slave inter-
faces. We also have 2 AXI masters for
both the DUT and MIG, and 2 Clocks
for the PCIe and MIG. aclk_0 is the
PCIe reference clock (in this case is
125 MHz) and must be clocked seper-
ately from the entire system. We will
use the MIG’s clock for the rest of the
design. Also generate a MIG 7 Se-
ries IP for our onboard DDR3 mem-
ory. You can read more about the MIG here. For our MIG customization, refer to our companion video as a guide, but
make sure you have access to a UCF pin constraints file (examples can be found online).

With both IPs in the BD generated, make the S00_AXI, S01_AXI, S02_AXI, aclk_0, and aresetn_0
ports of smartconnect_0 and the SYS_CLK_0, sys_rst_0, DDR3_0, ui_clk_sync_rst_0, ui_clk_0,
mmcm_locked_0, and init_calib_complete_0 ports of mig_7series_0 external by right clicking each
port and selecting Make External. We are making these pins external to utilize them elsewhere in the design and to
monitor them during simulation, so we will instantiate these pins in Verilog later.

Double click on the S00_AXI_0, S01_AXI_0, and S02_AXI_0 pins to modify their parameters. S00_AXI_0
and S01_AXI_0 will represent the two data signals from our DMA PCIe top module (DMA and bypass). You can
read more about the DMA PCIe IP here. As such, to properly connect both signals, S00 and S01 should be set to
AXI4 and the ID Width for both S00 and S01 needs to be set to 4 (as the PCIe AXI data signals will throw an error
when not set to 4 or unconnected). The AXI ID width determines how many IDs we can allocate (2^4 = 16), which
in turn determines how many transactions the AXI Master can track and reorder with the AXI transaction ID (side
note - packet reordering allows an AXI Master to correctly order transactions to ensure data integrity, akin to TCP
networking). The ID width itself is determined by the number of bits between cap_max_link_width - 1:0 (eg.
X4 = C_M_AXI_ID_WIDTH-1 = 3:0 which is 4 bits). We will use an AXI data width of 64 bits and an address
width of 32 bits.

The external S02 pin corresponds to the DUT. The parameters will depend based on which DUT is being tested. In
our example, we will test an AXI4Lite DUT, which only has a data width of 32 bits and an ID width of 0 (as there are
no ID signals in the AXI4Lite protocol). Accordingly, we will set the protocol of the S02 pin to AXI4Lite.
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Fig. 3: Making MIG and SmartConnect pins external
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PROJECT SUMMARY

16.1 Project Abstract

It can be challenging for universities to provide applicable, real-world experience to undergraduate students. Utiliz-
ing development boards provided by Qualcomm, students will be able to explore fundamental HDL-based concepts
not normally covered in an academic setting. Project effectiveness and student engagement is studied for further
improvements.

The project is separated into three distinct subsystems: software, infrastructure, and DUT. The relationship between
each subsystem is outlined according to the block diagrams here and on the introductory page. Each subsystem and its
complementary documentation is tested for cohesiveness according to student participation and subsequent feedback.
The subsystems make up a comprehensive prototyping environment that will provide valuable FPGA experience for
undergraduate students in the future and act as a valuable asset for the University of San Diego’s computer engineering
department moving forward.

16.2 Project Background

Our primary goal was to provide an industry-grade development kit to foster advanced digital design and hardware
platform competencies. This included focusing on building a development kit for the given Qualcomm hardware,
setting up the infrastructure of the board, instantiating the design components, and uitilizing software to directly
interface with the board.

The project objectives concentrated on having clear and concise enough information for an undergraduate engineering
student to utilize and provide illustrations/examples in order to deepen comprehension with benchmark tests for the
completion of each task and providing additional resources for further research.

This capstone project was part of the 2021 University of San Diego Shiley-Marcos School of Engineering & Comput-
ing Showcase. The landing page can be found here.
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Fig. 1: Top-level block diagram of system
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ADDITIONAL RESOURCES

17.1 Tutorials

The following websites are external resources that we highly recommend taking a look at:

• HDLBits - Great for learning Verilog

• ZipCPU - Interesting FPGA verification tutorials

• Nandland - FPGA and digital design fundamentals

• Xilinx Forums - Support for Xilinx FPGAs
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INDICES AND TABLES

• genindex

• search
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